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The mobility management system for mobile cloud 

computing, M2C2, aims to select the best cloud and 

network for processing sensor data while responders 

are in an emergency area. 

atural and manmade emergencies can cause tremendous economic, 
environmental, and, most importantly, human loss. Recent emergen-
cies, such as the Indian Ocean tsunami, Hurricane Katrina, and the 
9/11 terrorist attacks in New York City, caused significant loss of hu-
man lives. It is estimated that more than 280,000 lives were lost due 
to the 2004 Indian Ocean Tsunami.1  A recent report argued that the 

use of an information and communications technology (ICT) infrastructure could be ben-
eficial for evaluating and responding to emergency situations.2 However, ICT’s full po-
tential in emergency management is yet to be realized. For example, we need robust ICT 
systems that provide situational awareness of the emergency area and offer improved de-
cision support to manage emergencies efficiently. Emergency management also requires 
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safe evacuation of people from the danger zone; thus, 
an emergency management system must also collect, 
process, analyze, and disseminate relevant, accu-
rate, and timely information.3–5

Information about evacuees, responders, and 
the emergency area can be collected from various 
sources, including onsite or on-body sensors, wear-
able devices (such as Google Glass) worn by the re-
sponders, mobile nodes (such as smartphones), and 
cameras. This information can either be processed 
on responders’ mobile nodes or offloaded 
to the remote facility for better decision 
making. However, three key issues need 
consideration. First, mobile nodes have 
limited processing, storage, and battery 
resources and might be unsuitable for 
processing the large amounts of data 
originating from sensors and cameras. 
Second, timeliness in emergency man-
agement is crucial, and data upload and 
download to and from remote sites might 
not be feasible. Therefore, the data originating from 
the emergency area should be processed near the 
source to minimize end-to-end latency. Finally, we 
expect the devices, sensors, and cameras to be with 
the responders, who might move between several ac-
cess networks. These devices might experience hand-
offs, intermittent network connectivity, and limited 
bandwidth and coverage area.

Emergency management can benefit significant-
ly from mobile cloud computing (MCC), which 
enables offloading of computation and storage 
from mobile devices to the nearest cloud, prefer-
ably at the first hop.7 MCC can enable fast and 
secure access to relevant information required by 
the entities (such as responders) involved in an 
evacuation. Future wireless base stations or ac-
cess points will likely have cloud functionality, 
bringing the cloud to the edge of the network, and 
significantly reducing end-to-end latency and in-
creasing device battery lifetime.7,8 But to success-
fully integrate MCC into emergency management, 
we must address mobile and cloud computing 
challenges such as mobility management, hand-
offs, intermittent network connectivity, network 
latency, limited network bandwidth, network 
congestion, limited coverage area, and battery 
lifetime.6,9 MCC also needs to handle challenges 

associated with cloud resource management for 
efficient application provisioning while respond-
ers are on the move. For example, cloud quality-
of-service (QoS) parameters (CPU, RAM, and disk 
I/O) can vary stochastically depending on user de-
mands and workloads.10

Our mobility management system for mobile 
cloud computing, M2C2, uses multihoming to en-
sure seamless network handoffs (with low latency 
and packet loss) when the mobile node roams in 

an emergency area. It also incorporates cloud and 
network probing; and metrics for cloud and network 
selection based on application requirements and net-
work and cloud load. To the best of our knowledge, 
M2C2 is the first MCC system to support cloud and 
network-aware mobility management while respond-
ers are roaming in an emergency area.

Mobile Cloud Computing for Emergency 
Evacuation
Consider the scenario in Figure 1, where a group 
of responders are deployed in an emergency area to 
evacuate people. The evacuation area is divided into 
several zones, with each zone having an emergency re-
sponse vehicle (ERV). Each ERV provides local cloud 
functionality accessible via Wi-Fi, 3G, and satellite 
networks. The responders are equipped with mobile 
nodes (for example, smartphones), wearable devices 
(for example, Google Glass), and sensors (for example, 
accelerometers; GPS; temperature, and humidity sen-
sors; and so on), which connect to local clouds for low-
latency data processing, storage and access. The local 
cloud in each zone might also connect to the com-
mand station via 3G or a satellite link for holistic situ-
ational awareness of the emergency area. As a failover 
mechanism, the local cloud can also connect to public 
clouds for redundant data processing and storage.

Emergency management can  

benefit significantly from mobile cloud 

computing (MCC).
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The data originating from all the responders in a 
particular zone—that is, from their sensors or applica-
tions running on the mobile node—is transmitted via 
Wi-Fi or 3G networks to local clouds for processing, 
storage, and analysis. If the Wi-Fi network doesn’t 
provide sufficient QoS because of signal fading or 
network congestion, the responder’s mobile node can 
handoff to a 3G or satellite network (or vice versa) 
for data transmission. However, a handoff can cause 
temporary network disconnection, leading to inter-
mittent cloud connectivity for data processing and 
access. In addition, the nearest cloud might be sus-
ceptible to QoS degradation owing to large amounts 
of data being transferred and processed through it. 
Clouds must therefore be able to offload processing 
or storage to another local or public cloud. In regard 
to this, M2C2 provides fast and reliable data process-
ing and access via the best clouds and the best avail-
able access networks.

A Mobility Management System for 
Emergency Evacuation
Figure 2 shows M2C2’s high-level architecture, 
which includes Multihomed Mobile IP (M-MIP),11 a 
mobility management protocol, to support efficient 
handoffs between several access networks. Using 
M-MIP, a mobile node connects to several access 
networks simultaneously and probes them before 
initiating the handoff process (between these access 
networks). In particular, mobile nodes perform net-
work discovery, network configuration, and network 

registration for all available networks in advance, 
considerably reducing the number of steps during 
the handoff process, and resulting in low-latency 
handoffs with minimal packet losses.

M2C2 also incorporates several network and 
cloud entities to enable cloud and network prob-
ing and selection. These entities include local and 
public clouds, such as Amazon Elastic Compute 
Cloud  (EC2), Microsoft Azure, and Google Cloud 
Platform, home agent, cloud probing service (CPS), 
cloud ranking service (CRS), mobile node, Wi-Fi 
and 3G networks, and an anchor point. In M2C2, 
an anchor point can perform several roles. It can 
act as the home agent and assist a mobile node by 
providing it with network probing and handoff man-
agement functionalities. The anchor point can also 
run the CPS to probe local and public clouds, as 
well as the CRS to select the best cloud for applica-
tions to offload computation and storage. The mo-
bile node periodically tracks both clouds and net-
works via these M2C2 entities (anchor point, CPS, 
and CRS) so applications can determine the best 
cloud and network while responders roam in het-
erogeneous access networks (HANs), covering an 
emergency area.

Network Probing and Selection Mechanism
To select the best available network interface i, 
where i ∈ I, the mobile node performs passive net-
work path probing to compute the relative network 
load (RNLi) metric for each i.11 In particular, a mo-

• Local cloud
• Anchor point
• Home agent
• Cloud probing service
• Cloud ranking service
• Wi-Fi access point

Emergency response vehicle

Emergency
response
vehicle

• Accelerometer
• Temperature
• Humidity
• Heat
• GPS

Sensor armband

Mobile node

Satelite

Key components

3G network

Responders

Responders

Emergency area

Google Glass

FIGURE 1. A scenario for emergency evacuation during urban fires using mobile cloud computing.
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bile node probes all the available networks I simulta-
neously by periodically sending binding update mes-
sages to the home agent and by receiving the cor-
responding binding acknowledgment messages from 
the home agent (see Figure 2). The amount of time 
between the mobile node sending a binding update 
message to the home agent and receiving the cor-
responding binding acknowledgment message from 
the home agent is the roundtrip time (RTT). M2C2 
uses the RTT values to compute the RNL metric for 
determining the load on access networks.

We compute the RNL metric as follows:

RNL = Zn + cJn� (1)

Z
h

h
h

Zn n n= +
−

−
1 1

1RTT � (2)

RTTn = Rn – Sn� (3)

Dn = RTTn – RTTn–1� (4)

J
h

D
h

h
Jn n n= +

−
−

1 1
1 ,� (5)

where Sn is the sending time for the binding 
update packet from the mobile node to the home 
agent where n ∈ N; Rn is the time the binding 
acknowledgment packet is received at the mobile 
node from the home agent; h is the history window 
for calculating the weighted average, where h = 5 is 

considered to be an optimal value11; and c represents 
the weight of the RTT jitter value compared to the 
RTT value. For instance, the value c = 5 means that 
the RTT jitter value contributes five times more than 
the RTT value. Finally, we initialize the variables Z, 
D, and J as Z0 = RTT0, D0 = 0, and J0 = D1. The 
network i with a lowest RNL value [min(RNLi)] is 
the target network for handoff.

Cloud Probing and Selection Mechanism
M2C2 mechanisms for cloud probing and cloud 
ranking support QoS-aware cloud selection. The 
anchor point or any other dedicated network element 
on a particular access network can run the CPS (see 
Figure 2), which tracks the QoS statistics (CPU, 
memory, and I/O) of both public and local clouds 
by probing them regularly using RESTful APIs. The 
anchor point or any other dedicated entity in the 
network can also run the CRS, which retrieves the 
QoS stats from CPS (using a RESTFul API) and 
computes the rank for each cloud k ∈ K (where K 
represents all available clouds) based on criteria 
such as application type, CPU utilization, memory 
utilization, and disk I/O. Using a RESTful API, 
the mobile node can then retrieve the best cloud k 
based on the computed rank (Rk) for a particular 
application. The mobile node will then use the kth 
cloud for task processing and storage.

The URL of the RESTful API (for retrieving the 

Amazon Web Services cloud

1

Mobile node

Mobile node

Local cloud

Anchor point

Network probing using a
Multihomed Mobile IP (M-MIP) tunnel

Cloud probing

Mobile node’s movement

Wi-Fi

3G

2

3

1 2

3

FIGURE 2. The mobility management system for mobile cloud computing (M2C2) supports cloud and network probing and cloud 

and network selection when a responder roams in an emergency area and is connected via heterogeneous access networks 

such as Wi-Fi and 3G. While roaming, the responder’s application can also access both local and public clouds. M2C2 selects the 

best cloud and the best network for low-latency data computation and access.
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best cloud from CRS) is http://<CRS IP addr.></
cloudrankservice>. The tag <CRS IP addr.> 
represents the IP address of the CRS, and the tag 
</cloudrankservice> is the Web resource where the 
CRS is running. The mobile node makes a GET 
call to this URL and retrieves the best cloud as an 
HTTP response. Also, a GET call to http://<CRS IP 
addr.></cloudrankservice><appl. type> retrieves the 
best cloud k based on the supplied application type 
where the tag <appl. type> represents the different 
types of applications—for example, a critical medical 
response application.

CRS selects the best cloud k by computing 
the rank of each cloud Rk ∀ K using the simple 
additive weighting (SAW) scheme (Equation 6), a 
multicriteria decision-making method (MCDM).12 
We rank the clouds using the following formula:

Rk = wl(QoSj) + (1 – wl)(Costj),� (6)

where j ∈ J represents the jth QoS and cost parameter 
for cloud k ∈ K; Rk represents the rank of the kth 
cloud; wl represents the weights associated with 
each parameter QoSj and Costj for each application 
a ∈ A; and wl

l

N
=

=∑ 1
0

. The parameter Costj can be 
a monetary or probing cost related to a cloud service. 
The parameter QoSj represents QoS parameters, 
such as CPU utilization, network throughput, and 
end-to-end latency. Some QoS parameters, such as 
throughput need to be maximized, whereas others, 
such as cost, need to be minimized. Therefore, 
we normalize the parameters using the following 
generic equations:
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We select the cloud with the highest Rk (computed 
using Equation 6) as the best cloud.

As the mobile node starts roaming in the HANs, 
it constantly computes the RNLi metric (using 
Equations 1 through 5) for all networks I. Using the 
RNLi values, the mobile node makes handoffs with 
low latency and packet loss that don’t adversely af-

fect the applications running on the mobile node. At 
the same time, the mobile node retrieves the best 
cloud k from the anchor point and offloads the com-
putation/storage based on the selected cloud k.

Results
To validate our proposed system, we developed an 
activity recognition application service that uses var-
ious sensors (accelerometers, temperature sensors, 
GPS, and so on) to determine responders’ activi-
ties in an emergency evacuation. The use of activity 
recognition applications in areas such as cognitive 
assistance, emergency healthcare, and emergency 
management will likely increase significantly in the 
near future. In these areas, an activity recognition 
application might require a large amount of sensor 
data collection, fast activity recognition, and timely 
delivery of results to the user (responders and com-
mand center). However, performing all these steps 
on a responder’s mobile node could reduce battery 
lifetime and/or increase latency.8,13,14 Therefore, we 
envision the system performing activity recognition 
on clouds instead of mobile nodes to maximize bat-
tery lifetime while providing low-latency computa-
tion and access. The major challenges posed by ac-
tivity recognition applications running on clouds are

•	 efficient data collection from sensors;
•	 timely sensor data delivery to cloud-based activ-

ity recognition applications; 
•	 timely activity recognition using activity recog-

nition algorithms; and 
•	 timely results delivery to the user. 

We focus on the latter three tasks. For timely sen-
sor data and results delivery, the mobile node must 
select the best network i that provides high through-
put and low packet loss and delay. For timely activ-
ity recognition, the mobile node must select the best 
cloud k that determines the responder’s activity in a 
timely manner.

Prototype Implementation
We consider a scenario in which a responder using a 
mobile node roams seamlessly in an emergency area 
(see Figure 1). While roaming, the activity recogni-
tion application running on the responder’s mobile 
node collects sensory data and sends it to the best 
cloud, k, for processing. Upon recognizing the re-
sponder’s activity, the cloud k delivers the results 
to the mobile node/command center for emergency 
situation-awareness. To validate M2C2 in such a sce-
nario, we developed an M2C2 prototype that uses 
several components (see Figure 2)—Wi-Fi and 3G 
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networks, M-MIP, home agent, CPS and CRS run-
ning on the anchor point, the activity recognition 
application running on a mobile node, and the ac-
tivity recognition service running on several cloud 
instances (both local and public). We developed the 
M-MIP prototype using C++ to handle multihoming 
in HANs. 

For local clouds, we used Apple Macbook Pro 
computers with 16 Gbytes RAM and Intel i7 2.8-GHz 
processors. For public clouds, we used Amazon EC2 
micro instances running in the “eu-west-1c” region. 
To probe the Amazon EC2 instances, we used Apache 
jclouds, an open source multi cloud toolkit for Java 
(https://jclouds.apache.org), APIs to programmati-
cally orchestrate cloud operations such as starting, 
stopping, and terminating the virtual machines. We 
can also use this toolkit to gather QoS stats for the 
Amazon cloud instances. To gather QoS stats from 
the local cloud, we used the SIGAR Java API (https://
support.hyperic.com/display/SIGAR/Home), which 
provides statistics such as CPU utilization and mem-
ory usage. The CPS and CRS ran as RESTful Web 
services on the anchor point in an emergency area. 
The CRS sent the GET calls to the CPS to retrieve 
the QoS stats for all clouds. It then computed cloud 
ranks Rk for all clouds K (using Equations 6 through 
8), to determine the single best cloud, k, for perform-
ing the responder’s activity recognition. 

We implemented the situation and context 
aware activity recognition (SACAAR) algorithm15 as 

a RESTful Web service on local and public clouds 
to determine the responder’s activities. The mobile 
node subscribed to the CRS and retrieved the URL 
of the kth cloud. It then sent the sensor data to this 
cloud for performing activity recognition.

Experimental Analysis
We performed extensive experimentation using sev-
eral scenarios to validate M2C2. First, we studied the 
overall latency of performing activity recognition on 
both local and public clouds. Our aim with this ex-
periment was to benchmark the best and worst case 
scenarios while the responder is constantly con-
nected to the Internet via Wi-Fi or 3G networks us-
ing M-MIP. Time-critical applications such as aug-
mented reality, virtual reality, cognitive assistance, 
and activity recognition are extremely sensitive to 
latency.8,13 

Kiryong Ha and his colleagues have suggested 
that for these applications classes, the overall la-
tency shouldn’t be more than a few tens of millisec-
onds.8 In this article, we consider the case of activity 
recognition, where the overall latency of performing 
activity recognition on clouds is the summation of: 

•	 the time taken by the mobile node to send data 
to the activity recognition service running on 
clouds; 

•	 the time taken by the activity recognition algo-
rithm to determine the responder’s activity; and 
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•	 the time taken by the activity recognition ser-
vice to return the results to the activity recogni-
tion application running on the mobile node. 

Figure 3 shows the cumulative distribution 
function of the overall latency of performing activity 
recognition on local and public clouds while using 
Wi-Fi and 3G networks, respectively. For this exper-
iment, we considered four cases: 

•	 local cloud using a 3G network,
•	 local cloud using a Wi-Fi network, 
•	 public cloud using a 3G network, and 
•	 public cloud using a Wi-Fi network. 

For each case, the mobile node’s activity recognition 
application made an average of 3,353 (N = 13,412) 
API calls to activity recognition services running on 
clouds.

From this experiment, we concluded that, on 
average, the overall latency of performing activ-
ity recognition on the local cloud is significantly 
lower than on the public cloud for both Wi-Fi and 
3G networks, where the Wi-Fi network performs 
significantly better than the 3G network. Wi-Fi of-
fers significantly lower RTTs than a 3G network. 
For instance, the average latency (252.27 millisec-
onds) of performing activity recognition on a local 
cloud using a 3G network is more than twice as high 
as the average latency on a local cloud (113.90 ms) 
using a Wi-Fi network. Second, the latency of per-

forming activity recognition on a public cloud using 
a 3G network is on average almost 130 ms higher 
than when using a public cloud with Wi-Fi. This is 
because the distance between a mobile node and the 
cloud contributes to the increase in overall wide area 
network latency. From this experiment, we conclude 
that local clouds perform approximately 60 percent 
better than public clouds for activity recognition on 
both 3G and Wi-Fi networks. We also assert that the 
computation should be performed as much as pos-
sible at local clouds placed in an emergency area 
using Wi-Fi networks, assuming sufficient compute 
and storage resources are available at local clouds.

After benchmarking both local and public 
clouds using HANs, we performed experiments to 
determine whether M2C2 can select the best cloud, 
k, and the best network, i, under stochastic net-
work and cloud conditions such as network conges-
tion, handoffs, and variation of CPU utilization (re-
lated to clouds). In our second set of experiments, 
the home agent, CPS, and CRS ran on the anchor 
point (see Figure 2). To validate CPS and CRS, we 
deployed our activity recognition Web service on 
two micro instances on a public cloud (Amazon 
EC2). We assigned these instances two separate 
public IP addresses—54.77.183.180 (cloud 1) and 
54.77.218.113 (cloud 2)—and used CPS to probe 
them for CPU utilization. To verify the correctness 
of CPS and CRS, we generated a random synthetic 
workload using the stress utility on one of the public 
cloud instances and imposed a load of 100 percent 
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on the CPU cores. We didn’t put additional stress 
on the other cloud instance. Based on the randomly 
generated workloads and repeating the experiments 
more than a hundred times, we concluded that the 
CRS correctly selected the best cloud k. Whenever a 
responder’s mobile node requested k, the CRS gave 
the IP address for k to the mobile node, which then 
used k to perform activity recognition. The activity 
recognition Web service running on cloud k then 
inferred the user activity and sent it back as the re-
sponse to the mobile node.

As a third and final experiment, we studied 
whether M2C2 can support seamless handoffs (with 
low latency and packet loss) while the responder is on 
the move in an emergency area and his or her mo-
bile node is connected via 3G and Wi-Fi networks. 
In this experiment, we started the activity recognition 
application on the mobile node after initializing it. 
The activity recognition application probed the CRS 
for the best cloud instance, k, using the APIs. The 
mobile node also probed the anchor point (running 
home agent) for the best network, i, by computing the 
RNL metric for all networks I. In our experiments, 
we observed that the RNL values for the Wi-Fi net-
work were less stable than those for the 3G network. 
Initially, the mobile node was connected to the Wi-Fi 
network because it had lower RNL values than the 
3G network. After approximately 13 seconds (t = 13 
sec) into the experiment, the mobile node made a 
successful handoff without packet loss to the 3G net-
work and stayed with that network for nearly 4 sec-
onds, after which it made another successful handoff 
to the Wi-Fi network. Then, at time t = 23 sec, the 
mobile node performed another successful handoff 
from the Wi-Fi to the 3G network. Figure 4 shows 
the results related to handoffs and their effect on the 
overall latency of performing activity recognition. As 
the figure shows, the latency of performing activity 
recognition on a 3G network is higher than that on 
a Wi-Fi network. Most importantly, we observed that 
during the handoff process, the mobile node didn’t 
experience any packet loss and the activity recogni-
tion process wasn’t disrupted.

Our results clearly validate that M2C2 can ef-
ficiently support time-critical applications in emer-
gency management scenarios while responders are 
on the move. M2C2 successfully tracked the QoS 
parameters of all clouds K and all wireless networks 
I to determine the best cloud k and network i for 
activity recognition. 

e’re in the process of integrating speech and 
location recognition and face detection ap-

plication to M2C2, which we believe might be ben-
eficial for evacuating people in an emergency area. 
The proposed system can also easily be extended 
to include other applications that can be valuable 
in emergency evacuation scenarios, such as optical 
character recognition and augmented reality.
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