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Abstract 

A Service Level Agreement (SLA) establishes the trustworthiness of service providers and consumers in several 
domains; including the Internet of Things (IoT). Given the proliferation of Blockchain technology, we find it compelling 
to reconsider the assumption of trust and centralised governance typically practised in SLA management including 
monitoring, compliance assessment, and penalty enforcement. Therefore, we argue that, such critical tasks should 
be operated by blockchain-based smart contracts in a non-repudiable manner beyond the influence of any SLA 
party. This paper envisions an IoT scenario wherein a firefighting station outsources end-to-end IoT operations to a 
specialised service provider. The contractual relationship between them is governed by an SLA which stipulates a set 
of quality requirements and violation consequences. The main contribution of this paper lies in designing, deploying 
and empirically experimenting a novel blockchain-based SLA monitoring and compliance assessment framework 
in the context of IoT. This is done by utilising Hyperledger Fabric (HLF), an enterprise-grade blockchain technology. 
Our work highlights a set of considerations and best practice at two sides, the IoT application monitoring-side and 
the blockchain-side. Moreover, it experimentally validates the reliability of the proposed monitoring approach, which 
collects relevant metrics from each IoT component and examines them against the quality requirements stated in 
the SLA. Finally, we propose a novel design for smart contracts at the blockchain-side, analyse and benchmark the 
performance, and demonstrate that the new design proves to successfully handle Multiversion Concurrency Control 
(MVCC) conflicts typically encountered in blockchain applications, while maintaining sound throughput and latency.
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Introduction
Due to the potential complexity of IoT applications, it 
may be advantageous to outsource service provision 
to specialised service providers [1]. In turn, service 
providers promise acceptable levels of service delivery, 
and guarantee this through the Service Level Agreement 
(SLA) concept, which makes them responsible for 
meeting a set of quality standards (i.e availability, 
latency, throughput, etc) [2]. In particular, SLA regulates 

service delivery and delineates expectations, rights and 
obligations of each involved party [3].

According to the ISO/IEC 19086-2:2018 standard [4], 
the minimal form of an SLA should clearly define a set 
of properties as follows. First, the SLA must define SLA 
participants (at least service providers and consumers). 
Second, it includes Service Level Objectives (SLOs) 
that stipulate a set of obligations and responsibilities 
carried out by the service provider. Optimally, an 
SLO should represent a measurable service quality 
requirement such as availability, throughput, latency, 
jitter, packet loss rate [5]. For instance, availability must 
not be less than 99.9% all the time. Finally, the SLA can 
state a set of violation consequences enforced on the 
service provider when it fails to meet the agreement. 
The violation consequence can be a penalty imposed 

*Correspondence:
Ali Alzubaidi
aakzubaidi@uqu.edu.sa
1 School of Computing, Newcastle University, Newcastle upon Tyne, UK
2 Umm Al-Qura University, Makkah, Saudi Arabia
3 Luleå University of Technology, Skellefteå, Luleå, Sweden

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00409-7&domain=pdf
http://orcid.org/0000-0002-9653-4474


Page 2 of 22Alzubaidi et al. Journal of Cloud Computing           (2023) 12:50 

on the service provider in the form of financial service 
credit [6].

Service providers customarily employ the SLA con-
cept to establish their trustworthiness and assure their 
potential consumers about the quality of their offered 
services [7]. While SLA guarantees quality require-
ments (e.g. availability, latency, etc.), it is, as other con-
tractual methods, susceptible to breaches [8]. Therefore, 
service providers usually guarantee their commitment 
and show goodwill by accepting a set of violation con-
sequences (i.e. penalties). In current practice, several 
service providers promise to process violation incidents 
in good faith, assuring their consumers to impose SLA 
consequences on themselves [6].

One can question which party to trust as the authority 
of SLA enforcement and compliance [9]. This question 
becomes even more delicate when dealing with critical 
systems that are less tolerable to failures. The current 
SLA practice commonly assumes cloud providers for 
holding responsibility for typical SLA lifecycle man-
agement, such as SLA monitoring, compliance assess-
ment, incident management, and penalty enforcement 
[10, 11]. It is also typically the consumers’ responsibil-
ity to report a service level degradation, supported by 
evidence deemed irrefutable by the service provider or 
trusted third parties [6]. This is usually a tedious pro-
cess, manually handled, time-consuming, error-prone, 
and requires consumers’ good-faith [12, 13]. In some 
cases, service providers may not react well to poorly 
formed claims, regardless of their validity [14]. Both 
sides of a contractual relationship, service providers 
or consumers, may find it inviting to intentionally fab-
ricate or manipulate evidence of violation incidents in 
order to maximise profit or avoid hefty penalty [7]. In 
some scenarios, unresolved disputes have to be esca-
lated to jurisdiction means [10, 15].

Contributions: By considering the possibility of 
deliberate corruption, misconduct, opacity, conflict 
of interests, and single point of failure [16], this paper 
argues that no single party should solely control SLA 
life cycle management. Blockchain technology invites 
revisiting traditional applications wherever trust is 
taken for granted [17]; the SLA practice is no exception. 
Accordingly, this paper considers the potentiality of 
blockchain features (i.e. decentralisation and smart 
contracts) in enabling non-repudiable monitoring, SLA 
compliance assessment and enforcement of violation 
consequences in the context of IoT. Subsequently, this 
paper contributes the following: 

1 It proposes and evaluates a novel Blockchain-based 
IoT monitoring and compliance assessment frame-
work. The framework is applied to an IoT scenario of 

a firefighting station which hires a specialised IoT ser-
vices provider with an example SLA in place.

2 It proposes a set of design considerations and best 
practice at the two key components of the frame-
work; the monitoring side and the blockchain side. 
The design considerations are experimentally evalu-
ated and proven to provide reasonable performance. 
Also they eliminate typically encountered read-write 
conflicts caused by the multiversion concurrency 
control (MVCC) protocol employed by Hyperledger 
Fabric; an issue that we reported in our previous 
study [18].

Paper Organisation: This paper is organised as fol-
lows. Section Related Works highlights both blockchain 
and non-blockchain work in the context of SLA com-
pliance within IoT. Section  Preliminaries  describes the 
research context through an overview of a blockchain-
based IoT monitoring architecture applied to a fire-
fighting station scenario; wherein IoT-related tasks are 
outsourced to a service provider, and the contractual 
relationship is governed by an SLA. Section Monitoring 
Mechanism and Considerations analyses the journey of 
fire events, and designs and validates a monitoring mech-
anism that collects relevant metrics, examines them and 
reports SLA violation incidents to the blockchain-side of 
our framework. Section  Blockchain-based Compliance 
Assessment Approach  proposes a set of design consid-
erations for Blockchain-based smart contracts that (a) 
handle received SLA violation incidents from the moni-
toring-side, (b) assess the compliance of service provid-
ers with quality requirements stated in the SLA, (c) and 
enforces relevant penalties. Finally, Section  Experiment 
and Evaluation of the Blockchain Performance  imple-
ments and deploys the smart contracts using Hyperledger 
Fabric, and experimentally examines the performance of 
the blockchain-based smart contracts against various 
data loads of metrics reported by the monitoring-side. 
Figure 1 visually summarises the sequence of the meth-
odology conducted by this paper.

Related works
Recently, there has been a growing interest in 
establishing mechanisms and schemes that attempt to 
resolve the trust dilemma of SLAs; examples of which 
are explored in [1, 7, 9], such as reputation-based 
mechanisms, usage of auditors, feedback and review 
systems, trust brokers, and mediators. However, one 
can question the reliability of trust mechanisms that 
totally depend on service providers or third parties [19]. 
Neidhardt et  al. [16] shares our view in that traditional 
solutions only shift trust issues from service providers 
to third party solutions. For that, they propose placing 
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trust on Blockchain for SLA conformance validation. 
Scheid et al. [14] adopts Ethereum in their approach and 
provides a demonstration on the use of Blockchain for 
SLA monitoring and enforcement purposes. In [20], the 
authors note that the premissionless nature of Ethereum, 
means that monitoring entities can join or leave as they 
please, making it difficult to guarantee the stability of 
the monitoring service. Uriarte et  al. [8], also proposes 
a framework that covers the potentiality of Blockchain 
in key phases of a typical SLA life-cycle including 
monitoring and penalty enforcement.

While we can find in the literature other work that 
aims to leverage blockchain for SLA purposes, little 
effort has been made to specifically address the matter 
in the context of IoT applications. For instance, the work 
by [21] proposes an SLA management architecture for 
IoT purposes. However, the majority of existing works, 
including the above, adopt Ethereum as an underlying 
blockchain platform, which limits the potential of their 
proposed solution for several reasons. For example the 
limited scalability and performance of public blockchain 
networks, unsuitability from the perspectives of the need 
for permissions and privacy, and uncertainty of contract 
execution cost.

A more recent work by [22] adopts a permissioned 
Blockchain platform for monitoring purposes, namely 
Hyperledger Sawtooth. The adopted blockchain is based 
on a consensus protocol called Proof of Elapsed Time 
(PoET) and used to establish a common truth among 
involved monitoring entities. However, it does not 
specifically focus on monitoring the requirements of 
IoT application SLAs. Our previous work [18] adopts 
Hyperledger Fabric (HLF), which is an enterprise-grade 
permissioned blockchain platform for monitoring QoS 
and SLA provision within IoT applications. To the best 
of our knowledge, there are no extensive studies that 
adopt Hyperledger Fabric for end-to-end IoT application 

monitoring purposes. Our work complements existing 
works by proposing a practical blockchain-based moni-
toring framework in the context of IoT, which accounts 
for a set of design consideration at both sides, the block-
chain-side and monitoring-side. We also experimentally 
reveal the issue of read-write conflicts when subjecting 
the blockchain network to stress from the IoT monitor-
ing-side. This is due to the Multi-Version Concurrency 
Control (MVCC); a protocol employed by HLF for pre-
venting the double-spend problem. The implementation 
of our proposed framework experimentally proves to 
handle a high rate of transactions submitted by moni-
toring tools while maintaining a sound performance and 
mitigating the issue of MVCC conflicts.

Preliminaries
This section presents the research context by describing 
a simplified end-to-end IoT-based firefighting system, 
which observes fire events and reports them to a 
firefighting station. We presume a Service Level 
Agreement (SLA) between a firefighting station and 
an IoT Service Provider (IoTSP), which regulates 
their contractual relationship and governs quality 
requirements and violation consequences. This section 
also overviews the high-level architecture of the 
blockchain-based solution for automating distrusted 
processes such as monitoring, compliance assessment, 
billing, and imposing violation consequences.

Hypothetical IoT scenario
We assume a contractual relationship between a fire-
fighting station and an IoT solution provider, hereafter 
abbreviated as IoTSP. The firefighting station decides 
to embrace an IoT based solution for quicker response 
to fire events and severity mitigation. In order to alle-
viate the burden of dealing with IoT complexity, the 
firefighting station outsources IoT-related tasks such 

Fig. 1 Research Methodology
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as deployment, operations and management to the 
IoTSP. In this scenario, outsourcing such tasks leaves 
the firefighting station only responsible for responding 
to fire events emitted by the IoTSP. Figure 2 depicts the 
responsibility of the IoTSP, which covers geographically 
dispersed sensors controlled by edge computing units 
that locally observe their environment in a real-time 
manner. The IoTSP also covers a centralised cloud-
based IoT server that governs these field assets.

Fire event journey
Figure 3 conceptualises a simple sequence of stages for a 
fire event. Simply put, there would be a set of specialised 
fire detection sensors deployed to observe flames within 
their ranges. The collected data can be roughly expressed 
in the form of f | f ∈ {0, 1} where 1 indicates a detected 
fire event while 0 denotes the otherwise. These sensors 
periodically send collected data to their respective edge 
computing units. The latter analyses received data to 

Fig. 2 Overview of an IoT-based Fire Mitigation System. Edges 1,2, and 3 represent the edge computing nodes

Fig. 3 Stages of a fire event from origination until being reported
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identify whether it indicates a fire event. If so, the edge 
computing unit must immediately notify the central IoT 
server of the identified fire events. When the IoT server 
receives an incident, it must allow a specified duration 
(e.g. 5 seconds) for a follow-up message from the edge 
unit about the same location. Meanwhile, one of the 
following cases may occur:

• the IoT server receives a Discard message from the 
edge computing unit, and thus no further action is 
taken.

• the IoT server receives a Confirm message, which 
immediately triggers a report of a confirmed fire 
event to the firefighting station.

• the IoT server receives neither a Confirm nor a 
Discard message within the specified wait time 
(timeout). Therefore, the IoT server must take 
precautionary action by self-confirming the initial 
fire event and reporting it to the firefighting station.

SLA between IoTSP and firefighter station
In light of the above-described IoT-based firefighting 
scenario, assume an SLA that governs the relationship 
between the IoTSP and the firefighting station, which 
obligates the former to comply with a set of quality 
requirements. For instance, the IoTSP must observe 
for fire events f ∈ F  (where f = 1 ) and report them 
to the firefighting station within a specified duration 
(ts ≤ d) . The firefighting station expects quality 
availability all the time, especially during a confirmed 
fire event. Due to the scenario criticality in this study, 
the availability is not only limited to the IoT server but 
also extended to edge units. This quality requirement 
can be denoted as Aedge ∧ Aserver �= down . The SLA also 
specifies a set of breach categories BC, where it holds 
the IoTSP accountable for their consequences in case of 
violation. For example, consider three breach categories 
bc1, bc2, bc3 ⊆ BC as follows:

• bc1 : consider a situation where the IoTSP fails to 
report a confirmed fire event f due to a downtime of 
any covered component (¬ Aedge ∨ ¬ Aserver) , and 
therefore a failure to calculate the duration needed 
for processing and reporting the fire event, which 
will violates the condition of 0 < ts ≤ d . In such a 
failure case, ts = 0 . Accordingly, a monitoring metric 
tuple M is classified as a breach of type bc1 when it 
holds (f , ts = 0, (¬ Aedge ∨ ¬ Aserver)),

• bc2 : consider a situation where the IoTSP fails to 
maintain availability of the server or any edge com-
puting unit. However, this case does not occur dur-
ing a confirmed fire event f and thus it is less criti-

cal since ts = 0 is perfectly normal and expected. 
Accordingly, M is classified as bc2 when it holds 
(¬f , ts = 0, (¬ Aedge ∨ ¬ Aserver))

• bc3 : consider a situation where the IoTSP maintains 
available components, and manages to process 
and report confirmed fire events f, but fails to do 
so within the specified duration where it should be 
ts � d . Accordingly, M is classified as breach of type 
bc3 when it holds (f , ts � d, (Aedge ∧ Aserver))

 Other breach categories can be defined in a similar 
manner. Depending on the severity of each breach 
category bcj ⊆ BC | j ∈ N , the SLA defines the maximum 
tolerance mt to the violation frequency. Moreover, the 
SLA stipulates what penalty should be applied on the 
IoTSP if mt is reached. This done by tracking the violation 
rate vr for each bci , which is calculated as per Eq. 1,

where b is the count of breach cases and c is the count 
of compliant cases. As long as the violation rate (vr) does 
not exceed the assigned max tolerance vr ≯ mt , the SLA 
validity remains intact � ← true ; however, penalties 
are enforced whenever applicable. Otherwise, the SLA 
is terminated � ← false , and a full refund is issued to 
the consumer. Once the SLA is established, it declares 
the commitment of the IoTSP towards these promised 
quality requirements and violation consequences.

Architecture overview
Assuming an untrusted relationship between the fire-
fighting station and IoTSP, we consider automating and 
operating distrusted processes within a blockchain envi-
ronment such as compliance assessment and penalty 
enforcement. Figure  4 envisions the overall architecture 
where the IoTSP’s compliance level is under a continuous 
monitoring and examination against a set of promised 
Quality of Service (QoS) requirements. To materialise 
the blockchain-based monitoring and compliance archi-
tecture, we consider two primary components, which are 
the monitoring-side and blockchain-side; discussed as 
follows:

Monitoring‑side
A monitoring mechanism is necessary for providing 
the awareness and visibility needed for executing SLA 
distrusted processes [23, 24]. As illustrated in Fig. 5, the 
monitoring side is responsible for metrics collection 
related to quality requirements stated in the SLA. For 
example, it ceaselessly observes fire events f and tracks 
their journey from the initiation stage at the edge level, 

(1)vr =
n
i b

n
i b+

n
i c

× 100
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Fig. 4 Motivating IoT scenario where blockchain is employed for SLA monitoring and enforcement

Fig. 5 Metrics collection and reporting to the blockchain-side
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through the processing stage at the server level, and 
until the stage of reporting confirmed fire events to the 
firefighting station. It also continuously observes the 
availability of both the edge and the server computing 
units. Whenever the monitoring manager encounters 
an incident that requires attention, it alerts the smart 
contract by submitting a transaction consisting of a set of 
collected metrics M = (f , ts,Aedge,Aserver) , such that

• f indicates whether there was a confirmed fire event.
• ts the duration it takes the IoTSP to process and 

report a confirmed fire event if any.
• Aedge and Aserver are availability indicators of both 

edge computing units and the server.

 In order to avoid overwhelming the smart contract 
with unnecessary interactions, the monitoring manager 
controls the alerting mechanism such that transacting 
with the smart contract occurs only in the event of a 
confirmed fire event f or a breach b. Identifying either 
of them will cause the monitoring manager to submit a 
transaction to the blockchain.

Blockchain‑side
In this study, we employ Hyperledger Fabric (HLF) plat-
form, which enables benefiting from several blockchain 
principles such as decentralisation, transactions immu-
tability, consensus mechanism, and other blockchain 
features. Influenced by HLF philosophy, we consider a 
distributed system where involved parties construct a 
blockchain network and contribute to the infrastructure 
and computing resources.

As depicted in Fig.  6, we consider at least two 
organisations, which are the firefighting station and 

the IoTSP. Every organisation hosts a set of peers for 
high availability. In this distrusted environment, each 
participating organisation holds replicas of three essential 
elements, that are:

• a replica of the ledger; needed for committing and 
appending blocks of transactions;

• a replica of the state storage: needed for reflecting the 
latest state of persisted records; and

• a replica of a set of smart contracts (Chaincode), 
which executes distrusted processes and acts as a 
gateway to the local state storage.

As Fig. 4 highlights, a smart contract may compose the 
SLA terms, the logic of compliance assessment, and the 
functionality of both the billing and enforcing relevant 
violation consequences.

Monitoring mechanism and considerations
Most distrusted SLA-related processes are of a decision-
making nature, such as compliance assessment and 
penalty enforcement [9]. Transforming such processes 
into an autonomous decentralised application requires 
feeding them with relevant metrics from monitoring 
means [25]. By considering the presented SLA in 
section  SLA between IoTSP and Firefighter Station, we 
examine which relevant co-factors that could impact the 
compliance rate of the IoTSP towards its obligations. This 
section describes the overall monitoring architecture, 
metrics collection, as well as reporting mechanism to 
the blockchain side. The ultimate goal of this section 
is to engineer a mechanism for metrics collection and 
reporting to the blockchain while avoiding unnecessary 

Fig. 6 Hyperledger Fabric’s Blockchain network of two organisations: IoTSP and firefighting station
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transactions with the blockchain side and accounting for 
failed transactions.

Determining contributing factors to compliance status
In order to determine the adherence level towards a qual-
ity requirement, we need to determine co-factors that 
influence the compliance status. For demonstration pur-
poses, we consider the following quality requirements:

• QoS(Availabilitye,c) , where e ← edge and 
c ← IoTserver . We assume a centralised server, and 
several geographically dispersed edge computing 
units.

• QoS(ts) ≤ d , which mandates the IoTSP to process 
and report a fire alert to the firefighting station 
within a specified duration.

Determining the IoTSP compliance level with the avail-
ability requirement is a relatively straightforward process 
regarding; whether it is the server or an edge comput-
ing unit. That is, a binary decision tree of {true, false} 
can help determine the IoT compliance level towards the 
availability of any covered component. However, this is 
not the case in terms of the second quality requirement, 
which relates to the transmission time of a fire alert from 
its origination until being reported to the firefighting 
station.

Consider a dispute that arises of whether the IoTSP 
fulfilled its duty in reporting a fire event within ts ≤ d . 
Following are some cases which can lead to a dispute 
regarding this quality requirement which are:

• The firefighting station’s system fails to log the fire 
alert once received.

• The IoTSP fails to satisfy ts ≤ d , but it claims 
otherwise.

• The IoTSP satisfies ts ≤ d ; however, the firefighting 
station claims otherwise.

Therefore, we analyse the journey of a fire event from 
its initiation until being delivered to the firefighting 
station. This is to unambiguously determine what 
co-factors precisely determines the IoTSP’s compliance 
level towards ts ≤ d . Based on Fig.  3, we identify three 
possible scenarios where fire events that may develop 
from the state of being identified until being either 
discarded or reported to the firefighting station; as per 
depicted in Fig. 7. These three scenarios are as follows: 

1 False positive fire alert: It occurs when an edge com-
puting unit issues an initial fire alert to the server and 
then follows up with a discard message during the 
waiting period. Accordingly, the server must discard 
and refrain from reporting it to the firefighting sta-
tion.

Fig. 7 key stages for a fire event across different IoT layers
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2 True positive fire alert: It occurs when an edge 
computing unit issues an initial fire alert to the server 
and then follows up with a confirmation within the 
time limit (i.e. within five seconds). Accordingly, the 
server must immediately report the fire event to the 
firefighting station.

3 Dangling fire alert: It occurs when an edge computing 
unit sends an initial fire alert to the server; however, 
it fails to follow up with either confirm or discard 
messages within the time limit. Accordingly, the 
server assumes criticality at the edge side (e.g. 
fire damage); and thus report the fire event to the 
firefighting station.

Since this section focuses on co-factors contributing 
to the IoTSP compliance level, we can optionally omit 
the first scenario where fire events are classified as false 
positive and thus discarded. That is, the SLA obligates 
IoTSP to report fire events, which leaves the other 
two scenarios where fire events end up confirmed and 
reported to the firefighting station either because the 
edge computing unit issues a confirmation or because 
the IoT server self-confirms it for a precautionary 
reason.

For both of these scenarios, a fire alert undergoes a 
total transmission time as in Eq. 2, where T measures the 
actual transmission time of a fire alert from its origination 
(an edge computing unit) until being delivered to the 
firefighting station.

Figure 8 illustrates the total transmission time T forms 
the total of two main elements, which are as follows:

(2)T ← ts + tr

(3)ts ← treported − tidentified

(4)tr ← tack − treported

• ts refers to the duration that takes the fire alert from 
being issued at an edge computing unit tidentified until 
being reported by the server treported (calculated as 
per Eq. 3).

• tr refers to the rest of the fire alert journey, which 
is the duration that takes it from being reported by 
the server treported until being finally delivered to the 
firefighter station (calculated as per Eq. 4).

Figure  3 assigns the IoTSP with the responsibility 
of both the server and the edge computing unit. 
Subsequently, we can draw attention to ts which 
determines the compliance level of the IoT towards 
the quality requirement ts ≤ d . On the other hand, the 
SLA understandably does not cover tr because it can be 
subject to several factors beyond the immediate control 
of the IoTSP (e.g. Internet routing delay) or issues at the 
firefighting station system. For that, monitoring must not 
only aligns with quality requirements but also with SLA 
executions [6]. However, the blockchain-based solution 
can be designed to keep records of both tr for auditing 
and dispute resolution purposes.

Monitoring mechanism design and implementation
Figure 9 illustrate a monitoring and alerting architecture 
based on a well-established open-source project, namely 
Prometheus1. Reasons for this selection are summarised 
in [26], which include, but are not limited to,

• it is hosted by the Cloud Native Computing 
Foundation (CNCF)  2 and enjoys wide adoption 
and community support in terms of documentation, 
maintenance, integration tools and libraries.

Fig. 8 Timeline for fire event development

1 https:// prome theus. io/
2 https:// www. cncf. io/ cncf- prome theus- proje ct- journ ey

https://prometheus.io/
https://www.cncf.io/cncf-prometheus-project-journey
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• it adopts a pull approach for metric collection, in 
which target entities (edge, IoT server, firefighting 
station system) can export relevant metrics via REST 
APIs to be scraped by the monitoring manager.

• The Prometheus’s overall architecture considers high 
availability, replication, and fault-tolerance.

• supports flexible query language, namely PromQL, 
for defining rules and querying thresholds and 
alerts. it also provides a rich set of libraries and 
instrumentation tools for exporting relevant metrics 
from the targeted instances (application, containers, 
infrastructure, services, etc.)

• employs an alerting system that can be automatically 
triggered based on predefined conditions.

Using Prometheus, this study instruments a set of rel-
evant metrics for each component (edge, cloud, appli-
cation). It exposes these metrics via REST APIs. The 
monitoring manager collects and aggregates exposed 
metrics and stores them in a time-series database based 
on a set of rules. The Alert Manager regulates the alert-
ing mechanism and uses a query language (PromQL) to 
define what thresholds to trigger associated smart con-
tracts. There is also a component called Fabric REST 
Server that facilitates communication, authentication, 
and interaction between Prometheus (monitoring/alert-
ing system) and smart contracts on the blockchain side. 
Prometheus manager also enables outsourcing metrics 
from different components to a visualisation tool such as 
Grafana for analytics and insights that we need for experi-
mental purposes. The following sections delve further 
into the design and implementation of these components.

Metrics instrumentation and exporting
As shown in Fig.  9, both the monitoring manager and 
alerting mechanism depend on metrics exposed from 
each component of the IoT ecosystem. On the one 
hand, Prometheus’s exporters enable instrumenting and 
exposing relevant metrics from each component via an 
exposed REST API. On the other hand, the monitoring 
manager regularly collects metrics from components 
covered by the IoTSP (edge and sever) and the firefighting 
station system.

It is noteworthy that various IoT components are 
deployed to different locations of distinctive timezones. 
For example, the firefighter station possibly deploys 
its system to a data centre that differs from the IoTSP 
server or edge computing units. Hence, there arises the 
possibility of different timezones. As Fig. 9 depicts, there 
is a metric exporter which resides at the location of each 
component and thus is subject to the employed timezone 
settings of the respective component. Consider the fact 
that the calculation of ts or tr depend on timestamps 
from different timezones. To prevent unintended 
miscalculation, we employ a Unix timestamps system, 
which is a standardised time representation and timezone 
independent. Therefore, each exporter instruments and 
composes metrics using this Unix timestamp system.

Edge‑side exporter
As per discussed in Section  Determining Contributing 
Factors to Compliance Status  and presented in Fig.  8 
edge computing units are responsible for identifying fire 
events. Therefore, the Prometheus exporter composes 
and exports the metric tidentified at the edge side. Note 
that, Eq.  3 deems tidentified as the first essential element 
for evaluating the IoTSP’s adherence towards the 
quality metric ts . Moreover, edge computing units are 
responsible for confirming fire alerts. Therefore, we use 
tconfirmed to assert whether and when the edge computing 
unit was able to confirm a fire event.

Figure  10 illustrates the logic of instrumenting and 
exposing both tidentified , which indicates when a fire event 
was first identified, and tconfirmed which indicates the 
time of confirming the fire event. It uses the following 
conventions:

• f ′ an initial fire alert.
• f a confirmation of a fire event

Provided that there is a capable device at the edge-
side such as Raspberry PI4, a Prometheus exporter 
can be deployed to compose and expose relevant met-
rics via a REST API for collection by the monitoring 
manager. For example, once the edge computing unit 

Fig. 9 Employing Prometheus monitoring tool for feeding metrics to 
the Blockchain-side
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identifies a fire event and sends an initial alert f ′ , the 
Prometheus exporter assigns a timestamp to tidentified 
and then exposes it for collection. Afterwards, the Pro-
metheus exporter allows a delay to observe whether 
the edge unit confirms the fire event. When the fire 
event is confirmed f, it assigns tconfirmed a timestamp to 
be exposed for the monitoring manager. Otherwise, it 
rests tidentified to zero, which can indicate when the edge 
unit declares the fire event as a false positive.

Server‑side exporter
Recall that the IoT Server reports fire events to the fire-
fighting station only when they are confirmed either by 
the edge or self-confirmed by the server for precaution-
ary reasons (refer to section  Determining Contributing 
Factors to Compliance Status). That is why we do not 
only expose tconfirmed from the edge side, but also the 
IoT server-side as well. Figure  11 illustrates the logic of 
exposing relevant metrics from the server-side, which 

Fig. 10 Instrumenting and exposing relevant metrics at edge level

Fig. 11 Instrumenting and exposing relevant metrics at server level
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captures when the fire event f is confirmed tconfirmed and 
reported treported . Note that, Eq. 3 deems the latter as sec-
ond essential element for evaluating the IoTSP’s adher-
ence towards the quality metric ts . Moreover, note that 
tconfirmed metric can be assigned a timestamp by either the 
exporter at the edge side or the one at the IoT server. This 
measure is in place to account for natural disaster at the 
edge side which can cause a downtime to the edge com-
puting unit, which lead to a downtime for its Prometheus 
exporter as well. In this case, the IoT server self-confirms 
the fire event. Therefore, its Prometheus exporter over-
rides assigns a timestamp for tconfirmed metric to indicate 
when the fire event is deemed true positive.

The Prometheus exporter at the server-side rests all 
metrics to zero in two cases:

• false positive: the edge unit sends a “Discard” 
message.

• true positive: the fire alert is confirmed by either the 
edge unit or the IoT server itself. However, it fails to 
report it within the specified period.

Moreover, we track whether and when the firefighting 
station receives the reported fire event tack . While 
the latter does not contribute to evaluating IoTSP’s 
compliance, it is exposed and collected for assertion and 
auditing purposes.

Metrics collection
Since Prometheus adopts a metrics-pull mechanism, the 
monitoring manager regularly collects, analyses exposed 
metrics, and decides where there is an incident to report 
the blockchain side (See Fig. 5). As per the SLA, Fig. 12 
visualises relevant collected metrics such as availability/
downtime of covered IoT components, which are Edge-
side and Server-side, as per Fig. 12a. It also shows different 
fire states (confirmed fire f or no fire ¬f  ), as well as when 
a confirmed fire was identified tidentified and reported to 
the firefighting station treported . For the sake of an example, 
we assume a quality requirement QoS(ts ≯ 3) in order to 
cause deliberate breaches for experimental purposes.

The monitoring manager does not only collect metrics 
but also regulates when to report the IoTSP’s performance 
to the blockchain side. As shown in Fig.  5, the IoTSP’s 
performance is reported either on the occasion of a con-
firmed fire event f or a breach to a quality metric B, which 
can be due to unavailability of an edge computing unit 
Aedge ← down , unavailability of the server Aserver ← down 
or a breach to ts ≯ d . This measure is in place to avoid over-
whelming the blockchain with unnecessary transactions.

Algorithm  1 illustrates the procedure of metrics 
analysis, providing the following:

• the unavailability of any component, edge or server, 
implies a breach case that triggers the compliance 
evaluation. The Algorithm exempts the edge 
unavailability as in line  8 which does consider it 
in a breach of the availability requirement unless 
there is no fire event f = false . In other words, it 
exempts edge computing units from the availability 
requirement in case of natural disaster caused by a 
confirmed fire event f = ture.

• tconfirmed ∈ N | tconfirmed > 0 indicates a confirmed 
fire event f, which triggers the compliance 
evaluation. This metric is provided by both sides 
edge and server.

• In case of a confirmed fire event f, the monitoring 
manager examines whether the IoTSP reports the 
fire alert to the firefighting station. If so, it then 
examines the IoTSP’s compliance towards ts ≯ d in 
accordance with Eq.  3, which is the duration con-
sumed by the IoTSP for processing and reporting 
the confirmed fire event, as shown in Fig. 8.

Algorithm 1 Reporting Mechanism to the Blockchain Side

Validating the monitoring approach
This section particularly focuses on validating the 
monitoring part of this architecture which includes the 
following:

• metrics instrumentation and exposure from each 
covered IoT component (edge and cloud).

• metrics collection from by the monitoring manager.
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Fig. 12 A screenshot of metric collection and Incident Identification
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• alerting system, which is used for triggering the com-
pliance assessment smart contract.

Timestamping is the essence of each instrumented met-
ric discussed above. Consider Fig.  4, which depicts the 
overall architecture of a blockchain-based IoT monitoring 
and compliance assessment. For simplicity, we use Digital 
Ocean 3 to deploy both the IoT server application and the 
firefighting systems to different virtual machines located at 
different regions of distinctive timezones. The edge com-
puting unit is deployed using a Raspberry PI4 at a distinc-
tive region and timezone as well. Note that, Internet is the 
only possible way for these IoT components to connect and 
communicate over HTTP protocol due to the geographi-
cally despaired deployment of each IoT component.

A Prometheus exporter (A.K.A monitoring agent) 
is attached to each IoT component in order to expose 
relevant metrics. As a result, metrics exporters are 
influenced by the disparity of their associated IoT com-
ponents regarding the timezone difference and the need 
for an internet connection. The monitoring manager 
is also deployed to another cloud instance of different 
regions and timezone and thus needs to reach each Pro-
metheus exporter in order to collect exposed metrics.

Table  1 summaries metrics used for validating the 
monitoring approach (see Algorithm  1). Note that each 
metric combination has a different degree of criticality 
violation severity. Therefore, each one of them should 
be assigned a different maximum tolerance rate mr as 
discussed in section  SLA between IoTSP and Firefighter 
Station. Regardless, Table  1 maps each combination of 
these metrics to a decision of whether to consider it as an 
incident that leads to triggering the compliance assessment 
smart contract.

For experimental purposes, we deliberately cause inci-
dents to observe whether the monitoring can correctly 

classify them; and thus trigger the alerting mechanism. 
The designed incidents are as follows:

• To cause an edge unit downtime, we intentionally 
disconnect from the internet to halt its operation.

• To cause downtime to an IoT server or firefighting 
system, we simply halt the execution of the deployed 
application or shutdown or suspend the cloud virtual 
machine.

• to cause a fire alert, we expose the flame sensing 
module to extreme light or fire.

• To cause a breach to ts , we calculate the average 
time of processing and transmitting a confirmed fire 
event f from its origination until being reported to 
the firefighter station, which resulted in 3 seconds. 
Therefore, we assign the quality requirement 
ts ≤ 3second , which causes any reading below to be 
considered a breach.

Figure  12b depicts a visualised sample of metrics 
collected by the monitoring manager. To visualise the 
collected metrics, we design a dashboard using Grafana4 
and PromQL language. The dashboard shows the ability 
of the monitoring manager to constantly collect metrics 
from various exporters and identify incidents as well. For 
instance, it shows that the server maintained a constant 
uptime until it experienced a brief downtime, roughly 
between 5:40 am and 5:50 am. Regarding the edge unit, it 
shows a constant uptime expect three occasions as follows:

• before the server expedience a downtime 
( Aedge ← down while Aserver ← up).

• during the server downtime ( Aedge ← down while 
Aserver ← down)

• after the server resumed an uptime status 
( Aedge ← down while Aserver ← up)

Table 1 Classification and summary of metrics covered by Algorithm 1

f Transmission Time Metrics Availability Metrics

true tidentified treported ts Edge Server Incident?

true > 0 > 0 ≤ d up up No

true > 0 > 0 ≤ d down up No

true > 0 0 > 0 up down Yes

true > 0 > 0 > d up up Yes

false 0 0 0 up up No

false 0 0 0 down up Yes

false 0 0 0 up down Yes

false 0 0 0 down down Yes

3 https:// www. digit aloce an. com 4 https:// grafa na. com/

https://www.digitalocean.com
https://grafana.com/


Page 15 of 22Alzubaidi et al. Journal of Cloud Computing           (2023) 12:50  

The dashboard also depicts the journey of various fire 
alerts, as follows: 

1 first stage: timestamps of when fire events are being 
identified at the edge side (Yellow colour).

2 second stage: timestamps of when the fire alert is 
being confirmed (Red colour).

3 second stage: timestamps of when the fire alert is 
being confirmed (Blue colour).

The dashboard also maps the IoTSP’s performance 
in terms of ts , the duration it takes for processing and 
reporting each fire alert. As the dashboard shows, we 
calibrated ts to 3, which the IoTSP fails to challenge at 
the fire events. Therefore, the red area of the ts in the 
dashboard indicates a breach by the IoTSP regarding ts.

To sum up, the monitoring approach has proven to 
work properly and reliably for the purposes of this study. 
Furthermore, it also demonstrates the correct operation 
of the implemented IoT because the monitoring precisely 
reacted as per actions conducted on the IoT system. 
Accordingly, we can consider the monitoring approach 
reliable for triggering the smart contract compliance 
assessment, as discussed in the following sections.

Blockchain‑based compliance assessment 
approach
As discussed above, we consider a monitoring manager 
that interacts with the blockchain-side to report SLA 
violation incidents by submitting a transaction that 
holds a set of metrics M, where M = (f , ts,Aedge,Aserver) , 
as described in section  Monitoring-side. Unlike 
conventional applications, no blockchain operation 
is considered valid unless undergoing through a set of 

validation mechanisms such as ESCC (Endorsement 
System Chaincode), VSCC (Validation System 
Chaincode) and MVCC (Multi-Version Concurrency 
Control [27]. We particularly draw attention to the 
problem of MVCC conflicts which can be resulted from 
high rate of interactions between the monitoring-side 
and the blockchain-side; a scenario that might happen 
when there is a rapid number of violation incidents 
taking place simultaneously [18].

This section proposes a smart contract design for 
metrics evaluation and SLA compliance assessment 
which does not only promise to resolve MVCC conflicts 
but also maintains reasonably higher throughput 
and less latency. First, we highlight how the MVCC 
protocol can impact a high rate of transactions from the 
monitoring side. Then, we propose an SLA data model 
and an improved smart contract design that encounter 
the challenge of MVCC conflicts. Altogether are run 
over blockchain to be enforced on the hypothetical IoT-
based firefighting scenario approach with the aid of the 
above-discussed monitoring mechanism.

MVCC impact on high‑throughput transactions
Different blockchain platforms apply distinctive schemes 
to mitigate the double-spending problem. For example, 
HLF employs the MVCC mechanism to control records 
consistency by tracking version changes of a record in 
the form of (key : value, version). As depicted in Fig. 13, 
whenever there is a transaction T that causes an update 
operation to a record, there is a read set (k  :  val,  ver). 
Based on this read set, a write set (k : val′, ver′) attempts 
to update the state storage. However, before applying 
and committing the write set, the MVCC mechanism 
checks whether version ver of the read set is applicable. 

Fig. 13 Read-Write set conflicts caused by multiple transactions updating the same record
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Otherwise, the version could have been changed due to 
another transaction T1 that managed to be committed. 
In this case, the version of the read set will be classified 
as obsolete. Therefore, T2 fails when it tries to commit 
the write set [28]. The MVCC mechanism can pose a 
challenge to high-throughput applications where multi-
ple read-write sets are the norm, and double-spending is 
of no issue. For example, in our case, a high rate of trans-
actions expected from the monitoring side would typi-
cally cause multiple read-write operations on blockchain 
records. However, such transactions may highly likely 
face Read-Write sets conflicts due to the MVCC mecha-
nism [29].

In our previous study [18], we find these conflicts are 
attributed to multiple update transactions that happen 
to update the same asset while landing on the same 
block. By investigating the issue of MVCC conflicts, it 
appears that one transaction would succeed the MVCC 
validation, while the rest eventually fail due to a ver-
sion change caused by that successful transaction. We 
also find in our previous study that, adjusting HLF con-
figurations does not completely mitigate MVCC issues. 
Therefore, the present work address the issue of MVCC 
conflicts at the smart contract level be proposing an 

enhanced SLA data model and improved design of the 
smart contract.

Enhanced compliance data model
By studying the impact of the MVCC protocol on the 
compliance assessment, we found that the design of both 
the smart contract and the data model plays a vital role 
in mitigating Read-Write set conflicts. Therefore, this 
section proposes an enhanced compliance assessment 
approach based on a simple but effective, which essen-
tially prohibits update operations on performance records 
pri ∈ PR such that (k : val, ver) | �ver = 0 . This is to 
eliminate changes on records versions, which effectively 
mitigates the possibility of MVCC conflicts. In practice, 
instead of updating an existing performance record at the 
occurrence of each incident, there is a new pri for each 
incident which will be aggregated with other them at the 
end of every billing cycle. Figure 14 presents an enhanced 
SLA data model, which accommodates the following:

Breach categories
The SLA data model considers a complex SLA agreement 
that covers an end-to-end IoT system. The complexity is 
drawn from the fact that the SLA, presented in this paper, 

Fig. 14 Enhanced Data Model for Evaluation Compliance over Blockchain
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covers various breach categories bci ∈ BC , such that each 
of them is based on a combination of metrics as shown 
in Table 1. Therefore, the proposed SLA data model ena-
bles defining various types of breaches bci ∈ BC based 
on multiple quality requirements. Observe Fig. 14 which 
associates every bci ∈ BC to multiple quality require-
ments. Moreover, the SLA data model enables assigning 
distinctive max tolerance and penalty to every bci ; con-
sidering that each of them has a different criticality level 
and, therefore, distinctive consequences.

Performance reports
The enhanced SLA data model accommodate various 
breach categories in the form of [bcj : b] , where bcj is a 
unique identifier of a breach category, and b is the count 
of its occurrence. Caped by the storage capacity, the smart 
contract can create as many performance reports as long 
as there are incidents reported by the monitoring manager. 
Section  Processing Received Monitoring Metrics  further 
elaborates the logic of smart contract with performance 
reports. Therefore, the performance report does not 
consist of the properties validity or compliance status.

Aggregated assessment
The enhanced SLA data model introduces a component 
called aggregated assessment. For each billing cycle (i.e. 
monthly), the smart contract can create a new aggregated 
assessment instance to aggregate all existing performance 
reports. As can be seen in the enhanced SLA data model, 
it accumulates the total count of compliant cases c and 
count of breaches b of each breach category bcj . It also 
holds the violation rate vr for breach category against the 
total compliant cases c. The smart contract also uses the 
aggregated assessment to determine the overall compliance 
of the service provider. The validity property reflects the 
relevancy of this assessment to the current billing cycle.

Processing received monitoring metrics
Recall that the monitoring manager submits transactions 
to the blockchain-side upon the occurrence of an 
incident of either B or f. Refer to Algorithm  1 line 24, 
which reports a payload of collected metrics in the form 
of M = (f , ts, Aedge, Aserver) . Based on the enhanced 
SLA data model, this section addresses the limitations 
our previous study in [18]. Algorithm 2 overviews a smart 
contract method for processing and evaluating received 
metrics M. As long as the SLA is valid � = true , it accepts 
transactions from the monitoring-side and evaluates 
received metrics M against the respective quality 
requirements. As a result, the evaluation process classifies 
the performance of the IoTSP to be either compliant c or 
one of the predefined breach categories bci . Examples of 

breach categories are provided in section  SLA between 
IoTSP and Firefighter Station and illustrated in Table 1.

For every metrics evaluation, the smart contract 
creates a new performance record in the form of a tuple 
(k + 1, pr, ver) , where

• k + 1 is a unique identifier of the performance report.
• pr is performance report that holds the result of 

a metric evaluation against breaches categories 
bci ∈ BC.

• ver is version that tracks modifications on the 
performance record.

We consider pr to consist of ( c , [bcj : b]) where c 
indicates the count of compliant cases, and [bcj : b] 
indicates a the frequency of an incident belonging to 
a breach category, where bcj is a unique identifier of a 
breach category, and b is the count of its occurrence. 
Example of evaluation outcomes are as follows:

• compliance case: pr ← ( 1 , ∅).
• breach case: pr ← ( ∅ , [0002 : 1]).

As Algorithm 2 demonstrates, we opt to avoid the prac-
tice of updating an existing performance report (k , e′, ver′) . 
Instead, the proposed design dictates that there must be a 
newly created record (k + 1, e, ver) for every subsequent 
metric evaluation process. Once an evaluation record is 
created, it shall never be updated but may only be used for 
query purposes. In this way, we ensure there will always be 
one write operation, and therefore the version ver would 
not change at all. This perpetually mitigates the issue of 
conflicting read-write sets associated with the high rate of 
monitoring transactions per block.

Algorithm 2 Evaluation of Received Monitoring Metrics

Compliance assessment and enforcement
The smart contract can be instructed to periodically con-
duct an overall compliance assessment. We consider that 
read operations do not cause version modification, and 
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thus we do not expect MVCC conflicts. Therefore, the 
compliance assessment process should theoretically have 
the ability to aggregate all existing performance records 
at once (k : pr) | i ≤ k ≤ n | k ∈ N.

Algorithm 3 Concluding Assessment and Enforcement Logic

Algorithm  3 illustrates considering a set of per-
formance records for the compliance assessment; 
for example from ki to kn . The overall aim is to cal-
culate the violation rate vr of each breach category 
bcj ∈ BC | j ∈ N by examining its ratio against the total 

compliance cases. For that, the smart contract examines 
every (ki : pr) and query its properties ( c , bcj : b)) . It 
aggregates the total count of compliance cases, denoted 
as tc. Additionally, for every breach category bcj ∈ BC , 
it aggregates the total count of breach cases, denoted as 
tb. Afterwards, the violation rate vr of every bcj is calcu-
lated as per Eq.  1 and examined against the respective 
max tolerance mt. Note that the total compliance cases 
cannot be tc ≮ 1 to prevent division on zero in case of 
no breach cases.

The smart contract can take actions based on the out-
comes of the compliance assessment. For example, the 
smart contract can determines to terminate the SLA if 
the violation rate vr exceeds the max tolerance mr of 
any breach category bcj (refer to Algorithm  3 Line  19). 
This leads the smart contract to issue a full refund and 
halt further metrics evaluations because Algorithm  2 
does not process any incidents if the SLA is termi-
nated. Otherwise, the smart contract can the aggregated 
assessment to make an informed decision on whether 
to enforce a penalty on the escrow account. Finally, 
the smart contract removes all processed performance 
records for the state storage to avoid reusing them for 
the next aggregated assessment. However, they still 
remain permanently stored on the blockchain for future 
auditing purposes.

Experiment and evaluation of the blockchain 
performance
The purposes of the experiment is to evaluate whether 
the proposed smart contract design proves to mitigate 
MVCC conflict issues while maintaining sound 
performance. Therefore, we experiment and stress the 
proposed approach to investigate in terms of throughput 
and latency. More specifically, this experiment is 
concerned with two tasks assigned to the smart contract, 
which are metrics evaluation and SLA compliance 
assessment as in Algorithm  2 and Algorithm  3; 
respectively.

Table  2 illustrates the deployment of the blockchain 
network as well as relevant configurations and 
specifications. We choose to deploy the blockchain 
network, as in Fig. 6, on cloud infrastructure, as specified 
in Table  2. We experiment on the latest HLF version, as 
of writing this thesis, and adopted the recommended 
consensus protocol; namely RAFT [30]. All default 
parameters of the test network provided by HLF 
remains intact except the block batching configurations. 
We employ a blockchain benchmarking tool called 
Hyperledger Caliper for experimenting the performance 
of the enhanced compliance assessment approach. The 
experiment considers the following:

Table 2 Blockchain deployment and configurations

Element Description

Hyperledger Fabric Fabric version (2.3.2)

Blockchain Network See Fig. 6

Blocks Frequency Configuration - Transactions per Block: 10. - 
Timeout: 1s. - No size restrictions.

Smart Contract Language Java

Chaincode Timeout 30 seconds

Benchmark Tool - Hyperledger Caliper V0.4.2 - 5 
workers

Consensus Protocol Raft

State Storage CouchDB

Resources Allocation - 32 x vCPU Intel(R) Xeon(R) Gold 
6140 @2.30GHz - 64GB RAM.

Operating System and Docker - Ubuntu Linux 20.04.2 (64-bit). 
- Docker Version 20.10.6 (No 
restrictions on resources usage).
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• for each transaction execution, Algorithm  2 con-
ducts a limited number of read operations (e.g. 
query quality requirements) and a single write 
operation (creating evaluation record). However, 
this algorithm is expected to be invoked very fre-
quently; whenever the monitoring-side encounters 
an incident that requires attention. According to 
[31], using 5 worker for experimenting high rates 
of transactions seems to produce realistic results. 
We validated that from our side, and thus we use 5 
workers for submitting transaction from the moni-
toring-side.

• for each transaction execution, Algorithm  3, 
conducts a massive number of read operations 
on existing evaluation records, as explained in 
section  Compliance Assessment and Enforcement. 
It then results in a limited number of write 
operations which can include persisting the 
compliance assessment on the ledger, and handling 
the escrow account for enforcement purposes. 
Noteworthy mentioning that, this algorithm is 
only executed on limited occasions. For example, 
monthly billing, conducing payment, etc.

Fixed total transactions and variable rates
For Algorithm 2, we examine how it performs under vari-
ous rates of transactions per second. We set 10 rounds, as 
in Fig. 15, where we fix total transactions to 1000. How-
ever, we increase the transaction submission rates by 
100 Tps (Transactions per second) for each subsequent 
round. The aim is to investigate for each test round: (i) 
the send rate can be generated from the monitoring-side; 

(ii) the average throughput that can be archived at the 
blockchain-side; and (iii) the average round-trip transac-
tions latency. We aim also to find out whether any of the 
transaction would encounter unforeseen failure such as 
MVCC conflicts.

As shown in Fig.  15, for all test rounds, there was 
no transaction failure at all. The send rate tends to be 
identical to the intended transactions rate until the sev-
enth round, after which the send rate gradually exhibits 
a modest degradation. With regard to throughput,the 
benchmark shows an identical throughput to the send 
rate for the three first rounds. Thereafter, we observe 
an increasing transaction processing time and thus less 
throughput compared to send rate. Both studies in this 
[32, 33] justify this situation due the increasing queue 
length of transactions waiting for VSCC validation. In a 
study by [34], the long queue of transaction can be also 
attributed to a delay within the blockchain network. Nev-
ertheless, the throughput flattened out for the rest of test 
round at approximately 380 transactions/second, with 
unremarkable changes. In a similar manner, the latency 
remains very low without major difference for the first 4 
test round. Thereafter, it exhibits the possibility to break 
beyond 1 second, which is the max timeout set for block 
batching.

Variable total transactions and fixed average rate
To verify our outcomes, we fixed the send rate to 
500 transaction/second, which is more than the best 
achieved throughput from the above benchmark. 
We relaxed the total transactions with a minimum of 
1,000 and maximum of 10,000, where we increase 1000 
transactions for each test round. The aim to see whether 

Fig. 15 Algorithm 2 performance: processing received metrics at variable rates and fixed total of 1000 transactions
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this relaxation would achieve better throughput or does 
it have a negative impact on it. We also investigate how 
to this relaxation can be correlated to latency. A shown 
in Fig.  16, there is no significant disruption in the 
throughput rate for all test rounds as long as the send 
rate is the same. Nevertheless, we observe an overall 
linear latency increase influenced by the linear increase 
workload of transactions. Consider the last round of 
Fig. 15 with first round of Fig. 16 , were all try to submit 
1000 transaction/second but at different send rates. we 
observe that the latter achieve better latency than the 
former, which confirms a positive correlation between 
the send rate and expected latency [32, 33, 35].

All in all, the experiment reveals the ability of Algo-
rithm  2 to accommodate a high rate of transactions 
without encountering MVCC conflicts. It also prom-
ises a sound performance, given the complexity of the 

smart contract logic and the blockchain configurations. 
We also report that, the experiments altogether did not 
consume more than 15% of the allocated resources, as 
illustrated in Table 2.

Compliance assessment execution time
Periodically, the smart contract aggregates and con-
sumes a set of evaluation records for compliance 
assessment as illustrated in Algorithm  3. As shown 
in Fig.  17, we examine average latency of conducting 
the compliance on linearly variable number of stored 
records; increased by 1000 record for each round. For 
each round, we only need one transaction to trigger 
the compliance assessment, and thus we only focus on 
average latency and omit throughput. We observe that 
it exhibits a linear increase as a response to the amount 

Fig. 16 Algorithm 2 performance: processing received metrics at fixed rate of 500 transactions and variable total transactions

Fig. 17 Latency for executing Algorithm 3 on variable collection of evaluation records stored on HLF state storage
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of stored evaluation records. Overall, the smart contract 
proved to execute 10,000 evaluation records within no 
more 3.5 seconds. We deem this to be satisfactory, given 
that it is a non frequent task conducted occasionally, for 
billing and concluding purposes, over a massive number 
of records. We also do not normally expect such num-
ber of records unless there is a breach B or a fire event f, 
as specified per section Monitoring-side.

Conclusion and future work
This paper presented a blockchain-based monitoring 
approach in the context of IoT application performance 
and SLA compliance. It focuses on shifting distrusted 
SLA-related processes such as metrics evaluation and 
compliance assessment to blockchain based smart 
contracts. It examines and discusses critical aspects 
and considerations at two key components of our 
framework; the monitoring-side, and the blockchain-
side. While conventional software design strategies 
have proven to work well for centralised applications, 
we cannot safely assume the same in the context of 
distributed blockchain applications. As demonstrated 
in this work, it is vital to consider unique blockchain 
characteristics when designing a blockchain-based 
solution, such as transaction processing, execution 
behaviour, configurations and implemented protocols. 
This paper draws attention to the high rate of 
transactions emitted from IoT applications and 
consequently any deployed performance monitoring 
tools. For IoT applications that typically involve such 
high data rates, our work aims to resolve read-write 
multiversion concurrency control (MVCC) conflicts 
typically encountered in blockchain applications, while 
maintaining sound performance. From the monitoring-
side of our framework, this paper demonstrates how we 
can determine the most critical co-factors of relation 
to SLA compliance assessment. It designs a monitoring 
architecture and reporting mechanism, which not 
only accounts for possible failed transactions, but also 
engineers a mechanism for metrics collection and 
reporting, with the aim to avoid overwhelming the 
blockchain-side with unnecessary transactions. From 
the blockchain-side of our framework, the approach 
of this paper revolves around a simple, yet effective 
principle that segregates between read and write 
operations at both levels; the smart contract design and 
data representation at the state storage.

Our work paves the way for future work to 
investigate improving the performance at the HLF 
infrastructure level. For example, finding optimal block 
configurations, which plays a vital role for throughput 
and latency. HLF modularity makes it also interesting 
to study the impact of different HLF’s aspects on the 

overall performance, such as network size in terms of 
organisations, endorsing and committing peers. There 
is also the ordering service and employed consensus 
mechanism, chaincode configurations, smart contract 
programming languages and others.
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