
Alzubaidi et al. Journal of Cloud Computing (2023) 12:50
https://doi.org/10.1186/s13677-023-00409-7

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

A blockchain-based SLA monitoring
and compliance assessment for IoT ecosystems
Ali Alzubaidi1,2* , Karan Mitra3 and Ellis Solaiman1

Abstract

A Service Level Agreement (SLA) establishes the trustworthiness of service providers and consumers in several
domains; including the Internet of Things (IoT). Given the proliferation of Blockchain technology, we find it compelling
to reconsider the assumption of trust and centralised governance typically practised in SLA management including
monitoring, compliance assessment, and penalty enforcement. Therefore, we argue that, such critical tasks should
be operated by blockchain-based smart contracts in a non-repudiable manner beyond the influence of any SLA
party. This paper envisions an IoT scenario wherein a firefighting station outsources end-to-end IoT operations to a
specialised service provider. The contractual relationship between them is governed by an SLA which stipulates a set
of quality requirements and violation consequences. The main contribution of this paper lies in designing, deploying
and empirically experimenting a novel blockchain-based SLA monitoring and compliance assessment framework
in the context of IoT. This is done by utilising Hyperledger Fabric (HLF), an enterprise-grade blockchain technology.
Our work highlights a set of considerations and best practice at two sides, the IoT application monitoring-side and
the blockchain-side. Moreover, it experimentally validates the reliability of the proposed monitoring approach, which
collects relevant metrics from each IoT component and examines them against the quality requirements stated in
the SLA. Finally, we propose a novel design for smart contracts at the blockchain-side, analyse and benchmark the
performance, and demonstrate that the new design proves to successfully handle Multiversion Concurrency Control
(MVCC) conflicts typically encountered in blockchain applications, while maintaining sound throughput and latency.

Keywords Blockchain, Trust, SLA, IoT, Monitoring, MVCC, Performance, Hyperledger Fabric

Introduction
Due to the potential complexity of IoT applications, it
may be advantageous to outsource service provision
to specialised service providers [1]. In turn, service
providers promise acceptable levels of service delivery,
and guarantee this through the Service Level Agreement
(SLA) concept, which makes them responsible for
meeting a set of quality standards (i.e availability,
latency, throughput, etc) [2]. In particular, SLA regulates

service delivery and delineates expectations, rights and
obligations of each involved party [3].

According to the ISO/IEC 19086-2:2018 standard [4],
the minimal form of an SLA should clearly define a set
of properties as follows. First, the SLA must define SLA
participants (at least service providers and consumers).
Second, it includes Service Level Objectives (SLOs)
that stipulate a set of obligations and responsibilities
carried out by the service provider. Optimally, an
SLO should represent a measurable service quality
requirement such as availability, throughput, latency,
jitter, packet loss rate [5]. For instance, availability must
not be less than 99.9% all the time. Finally, the SLA can
state a set of violation consequences enforced on the
service provider when it fails to meet the agreement.
The violation consequence can be a penalty imposed

*Correspondence:
Ali Alzubaidi
aakzubaidi@uqu.edu.sa
1 School of Computing, Newcastle University, Newcastle upon Tyne, UK
2 Umm Al-Qura University, Makkah, Saudi Arabia
3 Luleå University of Technology, Skellefteå, Luleå, Sweden

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00409-7&domain=pdf
http://orcid.org/0000-0002-9653-4474

Page 2 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

on the service provider in the form of financial service
credit [6].

Service providers customarily employ the SLA con-
cept to establish their trustworthiness and assure their
potential consumers about the quality of their offered
services [7]. While SLA guarantees quality require-
ments (e.g. availability, latency, etc.), it is, as other con-
tractual methods, susceptible to breaches [8]. Therefore,
service providers usually guarantee their commitment
and show goodwill by accepting a set of violation con-
sequences (i.e. penalties). In current practice, several
service providers promise to process violation incidents
in good faith, assuring their consumers to impose SLA
consequences on themselves [6].

One can question which party to trust as the authority
of SLA enforcement and compliance [9]. This question
becomes even more delicate when dealing with critical
systems that are less tolerable to failures. The current
SLA practice commonly assumes cloud providers for
holding responsibility for typical SLA lifecycle man-
agement, such as SLA monitoring, compliance assess-
ment, incident management, and penalty enforcement
[10, 11]. It is also typically the consumers’ responsibil-
ity to report a service level degradation, supported by
evidence deemed irrefutable by the service provider or
trusted third parties [6]. This is usually a tedious pro-
cess, manually handled, time-consuming, error-prone,
and requires consumers’ good-faith [12, 13]. In some
cases, service providers may not react well to poorly
formed claims, regardless of their validity [14]. Both
sides of a contractual relationship, service providers
or consumers, may find it inviting to intentionally fab-
ricate or manipulate evidence of violation incidents in
order to maximise profit or avoid hefty penalty [7]. In
some scenarios, unresolved disputes have to be esca-
lated to jurisdiction means [10, 15].

Contributions: By considering the possibility of
deliberate corruption, misconduct, opacity, conflict
of interests, and single point of failure [16], this paper
argues that no single party should solely control SLA
life cycle management. Blockchain technology invites
revisiting traditional applications wherever trust is
taken for granted [17]; the SLA practice is no exception.
Accordingly, this paper considers the potentiality of
blockchain features (i.e. decentralisation and smart
contracts) in enabling non-repudiable monitoring, SLA
compliance assessment and enforcement of violation
consequences in the context of IoT. Subsequently, this
paper contributes the following:

1 It proposes and evaluates a novel Blockchain-based
IoT monitoring and compliance assessment frame-
work. The framework is applied to an IoT scenario of

a firefighting station which hires a specialised IoT ser-
vices provider with an example SLA in place.

2 It proposes a set of design considerations and best
practice at the two key components of the frame-
work; the monitoring side and the blockchain side.
The design considerations are experimentally evalu-
ated and proven to provide reasonable performance.
Also they eliminate typically encountered read-write
conflicts caused by the multiversion concurrency
control (MVCC) protocol employed by Hyperledger
Fabric; an issue that we reported in our previous
study [18].

Paper Organisation: This paper is organised as fol-
lows. Section Related Works highlights both blockchain
and non-blockchain work in the context of SLA com-
pliance within IoT. Section Preliminaries describes the
research context through an overview of a blockchain-
based IoT monitoring architecture applied to a fire-
fighting station scenario; wherein IoT-related tasks are
outsourced to a service provider, and the contractual
relationship is governed by an SLA. Section Monitoring
Mechanism and Considerations analyses the journey of
fire events, and designs and validates a monitoring mech-
anism that collects relevant metrics, examines them and
reports SLA violation incidents to the blockchain-side of
our framework. Section Blockchain-based Compliance
Assessment Approach proposes a set of design consid-
erations for Blockchain-based smart contracts that (a)
handle received SLA violation incidents from the moni-
toring-side, (b) assess the compliance of service provid-
ers with quality requirements stated in the SLA, (c) and
enforces relevant penalties. Finally, Section Experiment
and Evaluation of the Blockchain Performance imple-
ments and deploys the smart contracts using Hyperledger
Fabric, and experimentally examines the performance of
the blockchain-based smart contracts against various
data loads of metrics reported by the monitoring-side.
Figure 1 visually summarises the sequence of the meth-
odology conducted by this paper.

Related works
Recently, there has been a growing interest in
establishing mechanisms and schemes that attempt to
resolve the trust dilemma of SLAs; examples of which
are explored in [1, 7, 9], such as reputation-based
mechanisms, usage of auditors, feedback and review
systems, trust brokers, and mediators. However, one
can question the reliability of trust mechanisms that
totally depend on service providers or third parties [19].
Neidhardt et al. [16] shares our view in that traditional
solutions only shift trust issues from service providers
to third party solutions. For that, they propose placing

Page 3 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

trust on Blockchain for SLA conformance validation.
Scheid et al. [14] adopts Ethereum in their approach and
provides a demonstration on the use of Blockchain for
SLA monitoring and enforcement purposes. In [20], the
authors note that the premissionless nature of Ethereum,
means that monitoring entities can join or leave as they
please, making it difficult to guarantee the stability of
the monitoring service. Uriarte et al. [8], also proposes
a framework that covers the potentiality of Blockchain
in key phases of a typical SLA life-cycle including
monitoring and penalty enforcement.

While we can find in the literature other work that
aims to leverage blockchain for SLA purposes, little
effort has been made to specifically address the matter
in the context of IoT applications. For instance, the work
by [21] proposes an SLA management architecture for
IoT purposes. However, the majority of existing works,
including the above, adopt Ethereum as an underlying
blockchain platform, which limits the potential of their
proposed solution for several reasons. For example the
limited scalability and performance of public blockchain
networks, unsuitability from the perspectives of the need
for permissions and privacy, and uncertainty of contract
execution cost.

A more recent work by [22] adopts a permissioned
Blockchain platform for monitoring purposes, namely
Hyperledger Sawtooth. The adopted blockchain is based
on a consensus protocol called Proof of Elapsed Time
(PoET) and used to establish a common truth among
involved monitoring entities. However, it does not
specifically focus on monitoring the requirements of
IoT application SLAs. Our previous work [18] adopts
Hyperledger Fabric (HLF), which is an enterprise-grade
permissioned blockchain platform for monitoring QoS
and SLA provision within IoT applications. To the best
of our knowledge, there are no extensive studies that
adopt Hyperledger Fabric for end-to-end IoT application

monitoring purposes. Our work complements existing
works by proposing a practical blockchain-based moni-
toring framework in the context of IoT, which accounts
for a set of design consideration at both sides, the block-
chain-side and monitoring-side. We also experimentally
reveal the issue of read-write conflicts when subjecting
the blockchain network to stress from the IoT monitor-
ing-side. This is due to the Multi-Version Concurrency
Control (MVCC); a protocol employed by HLF for pre-
venting the double-spend problem. The implementation
of our proposed framework experimentally proves to
handle a high rate of transactions submitted by moni-
toring tools while maintaining a sound performance and
mitigating the issue of MVCC conflicts.

Preliminaries
This section presents the research context by describing
a simplified end-to-end IoT-based firefighting system,
which observes fire events and reports them to a
firefighting station. We presume a Service Level
Agreement (SLA) between a firefighting station and
an IoT Service Provider (IoTSP), which regulates
their contractual relationship and governs quality
requirements and violation consequences. This section
also overviews the high-level architecture of the
blockchain-based solution for automating distrusted
processes such as monitoring, compliance assessment,
billing, and imposing violation consequences.

Hypothetical IoT scenario
We assume a contractual relationship between a fire-
fighting station and an IoT solution provider, hereafter
abbreviated as IoTSP. The firefighting station decides
to embrace an IoT based solution for quicker response
to fire events and severity mitigation. In order to alle-
viate the burden of dealing with IoT complexity, the
firefighting station outsources IoT-related tasks such

Fig. 1 Research Methodology

Page 4 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

as deployment, operations and management to the
IoTSP. In this scenario, outsourcing such tasks leaves
the firefighting station only responsible for responding
to fire events emitted by the IoTSP. Figure 2 depicts the
responsibility of the IoTSP, which covers geographically
dispersed sensors controlled by edge computing units
that locally observe their environment in a real-time
manner. The IoTSP also covers a centralised cloud-
based IoT server that governs these field assets.

Fire event journey
Figure 3 conceptualises a simple sequence of stages for a
fire event. Simply put, there would be a set of specialised
fire detection sensors deployed to observe flames within
their ranges. The collected data can be roughly expressed
in the form of f | f ∈ {0, 1} where 1 indicates a detected
fire event while 0 denotes the otherwise. These sensors
periodically send collected data to their respective edge
computing units. The latter analyses received data to

Fig. 2 Overview of an IoT-based Fire Mitigation System. Edges 1,2, and 3 represent the edge computing nodes

Fig. 3 Stages of a fire event from origination until being reported

Page 5 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

identify whether it indicates a fire event. If so, the edge
computing unit must immediately notify the central IoT
server of the identified fire events. When the IoT server
receives an incident, it must allow a specified duration
(e.g. 5 seconds) for a follow-up message from the edge
unit about the same location. Meanwhile, one of the
following cases may occur:

• the IoT server receives a Discard message from the
edge computing unit, and thus no further action is
taken.

• the IoT server receives a Confirm message, which
immediately triggers a report of a confirmed fire
event to the firefighting station.

• the IoT server receives neither a Confirm nor a
Discard message within the specified wait time
(timeout). Therefore, the IoT server must take
precautionary action by self-confirming the initial
fire event and reporting it to the firefighting station.

SLA between IoTSP and firefighter station
In light of the above-described IoT-based firefighting
scenario, assume an SLA that governs the relationship
between the IoTSP and the firefighting station, which
obligates the former to comply with a set of quality
requirements. For instance, the IoTSP must observe
for fire events f ∈ F (where f = 1) and report them
to the firefighting station within a specified duration
(ts ≤ d) . The firefighting station expects quality
availability all the time, especially during a confirmed
fire event. Due to the scenario criticality in this study,
the availability is not only limited to the IoT server but
also extended to edge units. This quality requirement
can be denoted as Aedge ∧ Aserver �= down . The SLA also
specifies a set of breach categories BC, where it holds
the IoTSP accountable for their consequences in case of
violation. For example, consider three breach categories
bc1, bc2, bc3 ⊆ BC as follows:

• bc1 : consider a situation where the IoTSP fails to
report a confirmed fire event f due to a downtime of
any covered component (¬ Aedge ∨ ¬ Aserver) , and
therefore a failure to calculate the duration needed
for processing and reporting the fire event, which
will violates the condition of 0 < ts ≤ d . In such a
failure case, ts = 0 . Accordingly, a monitoring metric
tuple M is classified as a breach of type bc1 when it
holds (f , ts = 0, (¬ Aedge ∨ ¬ Aserver)),

• bc2 : consider a situation where the IoTSP fails to
maintain availability of the server or any edge com-
puting unit. However, this case does not occur dur-
ing a confirmed fire event f and thus it is less criti-

cal since ts = 0 is perfectly normal and expected.
Accordingly, M is classified as bc2 when it holds
(¬f , ts = 0, (¬ Aedge ∨ ¬ Aserver))

• bc3 : consider a situation where the IoTSP maintains
available components, and manages to process
and report confirmed fire events f, but fails to do
so within the specified duration where it should be
ts � d . Accordingly, M is classified as breach of type
bc3 when it holds (f , ts � d, (Aedge ∧ Aserver))

 Other breach categories can be defined in a similar
manner. Depending on the severity of each breach
category bcj ⊆ BC | j ∈ N , the SLA defines the maximum
tolerance mt to the violation frequency. Moreover, the
SLA stipulates what penalty should be applied on the
IoTSP if mt is reached. This done by tracking the violation
rate vr for each bci , which is calculated as per Eq. 1,

where b is the count of breach cases and c is the count
of compliant cases. As long as the violation rate (vr) does
not exceed the assigned max tolerance vr ≯ mt , the SLA
validity remains intact � ← true ; however, penalties
are enforced whenever applicable. Otherwise, the SLA
is terminated � ← false , and a full refund is issued to
the consumer. Once the SLA is established, it declares
the commitment of the IoTSP towards these promised
quality requirements and violation consequences.

Architecture overview
Assuming an untrusted relationship between the fire-
fighting station and IoTSP, we consider automating and
operating distrusted processes within a blockchain envi-
ronment such as compliance assessment and penalty
enforcement. Figure 4 envisions the overall architecture
where the IoTSP’s compliance level is under a continuous
monitoring and examination against a set of promised
Quality of Service (QoS) requirements. To materialise
the blockchain-based monitoring and compliance archi-
tecture, we consider two primary components, which are
the monitoring-side and blockchain-side; discussed as
follows:

Monitoring‑side
A monitoring mechanism is necessary for providing
the awareness and visibility needed for executing SLA
distrusted processes [23, 24]. As illustrated in Fig. 5, the
monitoring side is responsible for metrics collection
related to quality requirements stated in the SLA. For
example, it ceaselessly observes fire events f and tracks
their journey from the initiation stage at the edge level,

(1)vr =
n
i b

n
i b+

n
i c

× 100

Page 6 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

Fig. 4 Motivating IoT scenario where blockchain is employed for SLA monitoring and enforcement

Fig. 5 Metrics collection and reporting to the blockchain-side

Page 7 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

through the processing stage at the server level, and
until the stage of reporting confirmed fire events to the
firefighting station. It also continuously observes the
availability of both the edge and the server computing
units. Whenever the monitoring manager encounters
an incident that requires attention, it alerts the smart
contract by submitting a transaction consisting of a set of
collected metrics M = (f , ts,Aedge,Aserver) , such that

• f indicates whether there was a confirmed fire event.
• ts the duration it takes the IoTSP to process and

report a confirmed fire event if any.
• Aedge and Aserver are availability indicators of both

edge computing units and the server.

 In order to avoid overwhelming the smart contract
with unnecessary interactions, the monitoring manager
controls the alerting mechanism such that transacting
with the smart contract occurs only in the event of a
confirmed fire event f or a breach b. Identifying either
of them will cause the monitoring manager to submit a
transaction to the blockchain.

Blockchain‑side
In this study, we employ Hyperledger Fabric (HLF) plat-
form, which enables benefiting from several blockchain
principles such as decentralisation, transactions immu-
tability, consensus mechanism, and other blockchain
features. Influenced by HLF philosophy, we consider a
distributed system where involved parties construct a
blockchain network and contribute to the infrastructure
and computing resources.

As depicted in Fig. 6, we consider at least two
organisations, which are the firefighting station and

the IoTSP. Every organisation hosts a set of peers for
high availability. In this distrusted environment, each
participating organisation holds replicas of three essential
elements, that are:

• a replica of the ledger; needed for committing and
appending blocks of transactions;

• a replica of the state storage: needed for reflecting the
latest state of persisted records; and

• a replica of a set of smart contracts (Chaincode),
which executes distrusted processes and acts as a
gateway to the local state storage.

As Fig. 4 highlights, a smart contract may compose the
SLA terms, the logic of compliance assessment, and the
functionality of both the billing and enforcing relevant
violation consequences.

Monitoring mechanism and considerations
Most distrusted SLA-related processes are of a decision-
making nature, such as compliance assessment and
penalty enforcement [9]. Transforming such processes
into an autonomous decentralised application requires
feeding them with relevant metrics from monitoring
means [25]. By considering the presented SLA in
section SLA between IoTSP and Firefighter Station, we
examine which relevant co-factors that could impact the
compliance rate of the IoTSP towards its obligations. This
section describes the overall monitoring architecture,
metrics collection, as well as reporting mechanism to
the blockchain side. The ultimate goal of this section
is to engineer a mechanism for metrics collection and
reporting to the blockchain while avoiding unnecessary

Fig. 6 Hyperledger Fabric’s Blockchain network of two organisations: IoTSP and firefighting station

Page 8 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

transactions with the blockchain side and accounting for
failed transactions.

Determining contributing factors to compliance status
In order to determine the adherence level towards a qual-
ity requirement, we need to determine co-factors that
influence the compliance status. For demonstration pur-
poses, we consider the following quality requirements:

• QoS(Availabilitye,c) , where e ← edge and
c ← IoTserver . We assume a centralised server, and
several geographically dispersed edge computing
units.

• QoS(ts) ≤ d , which mandates the IoTSP to process
and report a fire alert to the firefighting station
within a specified duration.

Determining the IoTSP compliance level with the avail-
ability requirement is a relatively straightforward process
regarding; whether it is the server or an edge comput-
ing unit. That is, a binary decision tree of {true, false}
can help determine the IoT compliance level towards the
availability of any covered component. However, this is
not the case in terms of the second quality requirement,
which relates to the transmission time of a fire alert from
its origination until being reported to the firefighting
station.

Consider a dispute that arises of whether the IoTSP
fulfilled its duty in reporting a fire event within ts ≤ d .
Following are some cases which can lead to a dispute
regarding this quality requirement which are:

• The firefighting station’s system fails to log the fire
alert once received.

• The IoTSP fails to satisfy ts ≤ d , but it claims
otherwise.

• The IoTSP satisfies ts ≤ d ; however, the firefighting
station claims otherwise.

Therefore, we analyse the journey of a fire event from
its initiation until being delivered to the firefighting
station. This is to unambiguously determine what
co-factors precisely determines the IoTSP’s compliance
level towards ts ≤ d . Based on Fig. 3, we identify three
possible scenarios where fire events that may develop
from the state of being identified until being either
discarded or reported to the firefighting station; as per
depicted in Fig. 7. These three scenarios are as follows:

1 False positive fire alert: It occurs when an edge com-
puting unit issues an initial fire alert to the server and
then follows up with a discard message during the
waiting period. Accordingly, the server must discard
and refrain from reporting it to the firefighting sta-
tion.

Fig. 7 key stages for a fire event across different IoT layers

Page 9 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

2 True positive fire alert: It occurs when an edge
computing unit issues an initial fire alert to the server
and then follows up with a confirmation within the
time limit (i.e. within five seconds). Accordingly, the
server must immediately report the fire event to the
firefighting station.

3 Dangling fire alert: It occurs when an edge computing
unit sends an initial fire alert to the server; however,
it fails to follow up with either confirm or discard
messages within the time limit. Accordingly, the
server assumes criticality at the edge side (e.g.
fire damage); and thus report the fire event to the
firefighting station.

Since this section focuses on co-factors contributing
to the IoTSP compliance level, we can optionally omit
the first scenario where fire events are classified as false
positive and thus discarded. That is, the SLA obligates
IoTSP to report fire events, which leaves the other
two scenarios where fire events end up confirmed and
reported to the firefighting station either because the
edge computing unit issues a confirmation or because
the IoT server self-confirms it for a precautionary
reason.

For both of these scenarios, a fire alert undergoes a
total transmission time as in Eq. 2, where T measures the
actual transmission time of a fire alert from its origination
(an edge computing unit) until being delivered to the
firefighting station.

Figure 8 illustrates the total transmission time T forms
the total of two main elements, which are as follows:

(2)T ← ts + tr

(3)ts ← treported − tidentified

(4)tr ← tack − treported

• ts refers to the duration that takes the fire alert from
being issued at an edge computing unit tidentified until
being reported by the server treported (calculated as
per Eq. 3).

• tr refers to the rest of the fire alert journey, which
is the duration that takes it from being reported by
the server treported until being finally delivered to the
firefighter station (calculated as per Eq. 4).

Figure 3 assigns the IoTSP with the responsibility
of both the server and the edge computing unit.
Subsequently, we can draw attention to ts which
determines the compliance level of the IoT towards
the quality requirement ts ≤ d . On the other hand, the
SLA understandably does not cover tr because it can be
subject to several factors beyond the immediate control
of the IoTSP (e.g. Internet routing delay) or issues at the
firefighting station system. For that, monitoring must not
only aligns with quality requirements but also with SLA
executions [6]. However, the blockchain-based solution
can be designed to keep records of both tr for auditing
and dispute resolution purposes.

Monitoring mechanism design and implementation
Figure 9 illustrate a monitoring and alerting architecture
based on a well-established open-source project, namely
Prometheus1. Reasons for this selection are summarised
in [26], which include, but are not limited to,

• it is hosted by the Cloud Native Computing
Foundation (CNCF) 2 and enjoys wide adoption
and community support in terms of documentation,
maintenance, integration tools and libraries.

Fig. 8 Timeline for fire event development

1 https:// prome theus. io/
2 https:// www. cncf. io/ cncf- prome theus- proje ct- journ ey

https://prometheus.io/
https://www.cncf.io/cncf-prometheus-project-journey

Page 10 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

• it adopts a pull approach for metric collection, in
which target entities (edge, IoT server, firefighting
station system) can export relevant metrics via REST
APIs to be scraped by the monitoring manager.

• The Prometheus’s overall architecture considers high
availability, replication, and fault-tolerance.

• supports flexible query language, namely PromQL,
for defining rules and querying thresholds and
alerts. it also provides a rich set of libraries and
instrumentation tools for exporting relevant metrics
from the targeted instances (application, containers,
infrastructure, services, etc.)

• employs an alerting system that can be automatically
triggered based on predefined conditions.

Using Prometheus, this study instruments a set of rel-
evant metrics for each component (edge, cloud, appli-
cation). It exposes these metrics via REST APIs. The
monitoring manager collects and aggregates exposed
metrics and stores them in a time-series database based
on a set of rules. The Alert Manager regulates the alert-
ing mechanism and uses a query language (PromQL) to
define what thresholds to trigger associated smart con-
tracts. There is also a component called Fabric REST
Server that facilitates communication, authentication,
and interaction between Prometheus (monitoring/alert-
ing system) and smart contracts on the blockchain side.
Prometheus manager also enables outsourcing metrics
from different components to a visualisation tool such as
Grafana for analytics and insights that we need for experi-
mental purposes. The following sections delve further
into the design and implementation of these components.

Metrics instrumentation and exporting
As shown in Fig. 9, both the monitoring manager and
alerting mechanism depend on metrics exposed from
each component of the IoT ecosystem. On the one
hand, Prometheus’s exporters enable instrumenting and
exposing relevant metrics from each component via an
exposed REST API. On the other hand, the monitoring
manager regularly collects metrics from components
covered by the IoTSP (edge and sever) and the firefighting
station system.

It is noteworthy that various IoT components are
deployed to different locations of distinctive timezones.
For example, the firefighter station possibly deploys
its system to a data centre that differs from the IoTSP
server or edge computing units. Hence, there arises the
possibility of different timezones. As Fig. 9 depicts, there
is a metric exporter which resides at the location of each
component and thus is subject to the employed timezone
settings of the respective component. Consider the fact
that the calculation of ts or tr depend on timestamps
from different timezones. To prevent unintended
miscalculation, we employ a Unix timestamps system,
which is a standardised time representation and timezone
independent. Therefore, each exporter instruments and
composes metrics using this Unix timestamp system.

Edge‑side exporter
As per discussed in Section Determining Contributing
Factors to Compliance Status and presented in Fig. 8
edge computing units are responsible for identifying fire
events. Therefore, the Prometheus exporter composes
and exports the metric tidentified at the edge side. Note
that, Eq. 3 deems tidentified as the first essential element
for evaluating the IoTSP’s adherence towards the
quality metric ts . Moreover, edge computing units are
responsible for confirming fire alerts. Therefore, we use
tconfirmed to assert whether and when the edge computing
unit was able to confirm a fire event.

Figure 10 illustrates the logic of instrumenting and
exposing both tidentified , which indicates when a fire event
was first identified, and tconfirmed which indicates the
time of confirming the fire event. It uses the following
conventions:

• f ′ an initial fire alert.
• f a confirmation of a fire event

Provided that there is a capable device at the edge-
side such as Raspberry PI4, a Prometheus exporter
can be deployed to compose and expose relevant met-
rics via a REST API for collection by the monitoring
manager. For example, once the edge computing unit

Fig. 9 Employing Prometheus monitoring tool for feeding metrics to
the Blockchain-side

Page 11 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

identifies a fire event and sends an initial alert f ′ , the
Prometheus exporter assigns a timestamp to tidentified
and then exposes it for collection. Afterwards, the Pro-
metheus exporter allows a delay to observe whether
the edge unit confirms the fire event. When the fire
event is confirmed f, it assigns tconfirmed a timestamp to
be exposed for the monitoring manager. Otherwise, it
rests tidentified to zero, which can indicate when the edge
unit declares the fire event as a false positive.

Server‑side exporter
Recall that the IoT Server reports fire events to the fire-
fighting station only when they are confirmed either by
the edge or self-confirmed by the server for precaution-
ary reasons (refer to section Determining Contributing
Factors to Compliance Status). That is why we do not
only expose tconfirmed from the edge side, but also the
IoT server-side as well. Figure 11 illustrates the logic of
exposing relevant metrics from the server-side, which

Fig. 10 Instrumenting and exposing relevant metrics at edge level

Fig. 11 Instrumenting and exposing relevant metrics at server level

Page 12 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

captures when the fire event f is confirmed tconfirmed and
reported treported . Note that, Eq. 3 deems the latter as sec-
ond essential element for evaluating the IoTSP’s adher-
ence towards the quality metric ts . Moreover, note that
tconfirmed metric can be assigned a timestamp by either the
exporter at the edge side or the one at the IoT server. This
measure is in place to account for natural disaster at the
edge side which can cause a downtime to the edge com-
puting unit, which lead to a downtime for its Prometheus
exporter as well. In this case, the IoT server self-confirms
the fire event. Therefore, its Prometheus exporter over-
rides assigns a timestamp for tconfirmed metric to indicate
when the fire event is deemed true positive.

The Prometheus exporter at the server-side rests all
metrics to zero in two cases:

• false positive: the edge unit sends a “Discard”
message.

• true positive: the fire alert is confirmed by either the
edge unit or the IoT server itself. However, it fails to
report it within the specified period.

Moreover, we track whether and when the firefighting
station receives the reported fire event tack . While
the latter does not contribute to evaluating IoTSP’s
compliance, it is exposed and collected for assertion and
auditing purposes.

Metrics collection
Since Prometheus adopts a metrics-pull mechanism, the
monitoring manager regularly collects, analyses exposed
metrics, and decides where there is an incident to report
the blockchain side (See Fig. 5). As per the SLA, Fig. 12
visualises relevant collected metrics such as availability/
downtime of covered IoT components, which are Edge-
side and Server-side, as per Fig. 12a. It also shows different
fire states (confirmed fire f or no fire ¬f), as well as when
a confirmed fire was identified tidentified and reported to
the firefighting station treported . For the sake of an example,
we assume a quality requirement QoS(ts ≯ 3) in order to
cause deliberate breaches for experimental purposes.

The monitoring manager does not only collect metrics
but also regulates when to report the IoTSP’s performance
to the blockchain side. As shown in Fig. 5, the IoTSP’s
performance is reported either on the occasion of a con-
firmed fire event f or a breach to a quality metric B, which
can be due to unavailability of an edge computing unit
Aedge ← down , unavailability of the server Aserver ← down
or a breach to ts ≯ d . This measure is in place to avoid over-
whelming the blockchain with unnecessary transactions.

Algorithm 1 illustrates the procedure of metrics
analysis, providing the following:

• the unavailability of any component, edge or server,
implies a breach case that triggers the compliance
evaluation. The Algorithm exempts the edge
unavailability as in line 8 which does consider it
in a breach of the availability requirement unless
there is no fire event f = false . In other words, it
exempts edge computing units from the availability
requirement in case of natural disaster caused by a
confirmed fire event f = ture.

• tconfirmed ∈ N | tconfirmed > 0 indicates a confirmed
fire event f, which triggers the compliance
evaluation. This metric is provided by both sides
edge and server.

• In case of a confirmed fire event f, the monitoring
manager examines whether the IoTSP reports the
fire alert to the firefighting station. If so, it then
examines the IoTSP’s compliance towards ts ≯ d in
accordance with Eq. 3, which is the duration con-
sumed by the IoTSP for processing and reporting
the confirmed fire event, as shown in Fig. 8.

Algorithm 1 Reporting Mechanism to the Blockchain Side

Validating the monitoring approach
This section particularly focuses on validating the
monitoring part of this architecture which includes the
following:

• metrics instrumentation and exposure from each
covered IoT component (edge and cloud).

• metrics collection from by the monitoring manager.

Page 13 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

Fig. 12 A screenshot of metric collection and Incident Identification

Page 14 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

• alerting system, which is used for triggering the com-
pliance assessment smart contract.

Timestamping is the essence of each instrumented met-
ric discussed above. Consider Fig. 4, which depicts the
overall architecture of a blockchain-based IoT monitoring
and compliance assessment. For simplicity, we use Digital
Ocean 3 to deploy both the IoT server application and the
firefighting systems to different virtual machines located at
different regions of distinctive timezones. The edge com-
puting unit is deployed using a Raspberry PI4 at a distinc-
tive region and timezone as well. Note that, Internet is the
only possible way for these IoT components to connect and
communicate over HTTP protocol due to the geographi-
cally despaired deployment of each IoT component.

A Prometheus exporter (A.K.A monitoring agent)
is attached to each IoT component in order to expose
relevant metrics. As a result, metrics exporters are
influenced by the disparity of their associated IoT com-
ponents regarding the timezone difference and the need
for an internet connection. The monitoring manager
is also deployed to another cloud instance of different
regions and timezone and thus needs to reach each Pro-
metheus exporter in order to collect exposed metrics.

Table 1 summaries metrics used for validating the
monitoring approach (see Algorithm 1). Note that each
metric combination has a different degree of criticality
violation severity. Therefore, each one of them should
be assigned a different maximum tolerance rate mr as
discussed in section SLA between IoTSP and Firefighter
Station. Regardless, Table 1 maps each combination of
these metrics to a decision of whether to consider it as an
incident that leads to triggering the compliance assessment
smart contract.

For experimental purposes, we deliberately cause inci-
dents to observe whether the monitoring can correctly

classify them; and thus trigger the alerting mechanism.
The designed incidents are as follows:

• To cause an edge unit downtime, we intentionally
disconnect from the internet to halt its operation.

• To cause downtime to an IoT server or firefighting
system, we simply halt the execution of the deployed
application or shutdown or suspend the cloud virtual
machine.

• to cause a fire alert, we expose the flame sensing
module to extreme light or fire.

• To cause a breach to ts , we calculate the average
time of processing and transmitting a confirmed fire
event f from its origination until being reported to
the firefighter station, which resulted in 3 seconds.
Therefore, we assign the quality requirement
ts ≤ 3second , which causes any reading below to be
considered a breach.

Figure 12b depicts a visualised sample of metrics
collected by the monitoring manager. To visualise the
collected metrics, we design a dashboard using Grafana4
and PromQL language. The dashboard shows the ability
of the monitoring manager to constantly collect metrics
from various exporters and identify incidents as well. For
instance, it shows that the server maintained a constant
uptime until it experienced a brief downtime, roughly
between 5:40 am and 5:50 am. Regarding the edge unit, it
shows a constant uptime expect three occasions as follows:

• before the server expedience a downtime
(Aedge ← down while Aserver ← up).

• during the server downtime (Aedge ← down while
Aserver ← down)

• after the server resumed an uptime status
(Aedge ← down while Aserver ← up)

Table 1 Classification and summary of metrics covered by Algorithm 1

f Transmission Time Metrics Availability Metrics

true tidentified treported ts Edge Server Incident?

true > 0 > 0 ≤ d up up No

true > 0 > 0 ≤ d down up No

true > 0 0 > 0 up down Yes

true > 0 > 0 > d up up Yes

false 0 0 0 up up No

false 0 0 0 down up Yes

false 0 0 0 up down Yes

false 0 0 0 down down Yes

3 https:// www. digit aloce an. com 4 https:// grafa na. com/

https://www.digitalocean.com
https://grafana.com/

Page 15 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

The dashboard also depicts the journey of various fire
alerts, as follows:

1 first stage: timestamps of when fire events are being
identified at the edge side (Yellow colour).

2 second stage: timestamps of when the fire alert is
being confirmed (Red colour).

3 second stage: timestamps of when the fire alert is
being confirmed (Blue colour).

The dashboard also maps the IoTSP’s performance
in terms of ts , the duration it takes for processing and
reporting each fire alert. As the dashboard shows, we
calibrated ts to 3, which the IoTSP fails to challenge at
the fire events. Therefore, the red area of the ts in the
dashboard indicates a breach by the IoTSP regarding ts.

To sum up, the monitoring approach has proven to
work properly and reliably for the purposes of this study.
Furthermore, it also demonstrates the correct operation
of the implemented IoT because the monitoring precisely
reacted as per actions conducted on the IoT system.
Accordingly, we can consider the monitoring approach
reliable for triggering the smart contract compliance
assessment, as discussed in the following sections.

Blockchain‑based compliance assessment
approach
As discussed above, we consider a monitoring manager
that interacts with the blockchain-side to report SLA
violation incidents by submitting a transaction that
holds a set of metrics M, where M = (f , ts,Aedge,Aserver) ,
as described in section Monitoring-side. Unlike
conventional applications, no blockchain operation
is considered valid unless undergoing through a set of

validation mechanisms such as ESCC (Endorsement
System Chaincode), VSCC (Validation System
Chaincode) and MVCC (Multi-Version Concurrency
Control [27]. We particularly draw attention to the
problem of MVCC conflicts which can be resulted from
high rate of interactions between the monitoring-side
and the blockchain-side; a scenario that might happen
when there is a rapid number of violation incidents
taking place simultaneously [18].

This section proposes a smart contract design for
metrics evaluation and SLA compliance assessment
which does not only promise to resolve MVCC conflicts
but also maintains reasonably higher throughput
and less latency. First, we highlight how the MVCC
protocol can impact a high rate of transactions from the
monitoring side. Then, we propose an SLA data model
and an improved smart contract design that encounter
the challenge of MVCC conflicts. Altogether are run
over blockchain to be enforced on the hypothetical IoT-
based firefighting scenario approach with the aid of the
above-discussed monitoring mechanism.

MVCC impact on high‑throughput transactions
Different blockchain platforms apply distinctive schemes
to mitigate the double-spending problem. For example,
HLF employs the MVCC mechanism to control records
consistency by tracking version changes of a record in
the form of (key : value, version). As depicted in Fig. 13,
whenever there is a transaction T that causes an update
operation to a record, there is a read set (k : val, ver).
Based on this read set, a write set (k : val′, ver′) attempts
to update the state storage. However, before applying
and committing the write set, the MVCC mechanism
checks whether version ver of the read set is applicable.

Fig. 13 Read-Write set conflicts caused by multiple transactions updating the same record

Page 16 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

Otherwise, the version could have been changed due to
another transaction T1 that managed to be committed.
In this case, the version of the read set will be classified
as obsolete. Therefore, T2 fails when it tries to commit
the write set [28]. The MVCC mechanism can pose a
challenge to high-throughput applications where multi-
ple read-write sets are the norm, and double-spending is
of no issue. For example, in our case, a high rate of trans-
actions expected from the monitoring side would typi-
cally cause multiple read-write operations on blockchain
records. However, such transactions may highly likely
face Read-Write sets conflicts due to the MVCC mecha-
nism [29].

In our previous study [18], we find these conflicts are
attributed to multiple update transactions that happen
to update the same asset while landing on the same
block. By investigating the issue of MVCC conflicts, it
appears that one transaction would succeed the MVCC
validation, while the rest eventually fail due to a ver-
sion change caused by that successful transaction. We
also find in our previous study that, adjusting HLF con-
figurations does not completely mitigate MVCC issues.
Therefore, the present work address the issue of MVCC
conflicts at the smart contract level be proposing an

enhanced SLA data model and improved design of the
smart contract.

Enhanced compliance data model
By studying the impact of the MVCC protocol on the
compliance assessment, we found that the design of both
the smart contract and the data model plays a vital role
in mitigating Read-Write set conflicts. Therefore, this
section proposes an enhanced compliance assessment
approach based on a simple but effective, which essen-
tially prohibits update operations on performance records
pri ∈ PR such that (k : val, ver) | �ver = 0 . This is to
eliminate changes on records versions, which effectively
mitigates the possibility of MVCC conflicts. In practice,
instead of updating an existing performance record at the
occurrence of each incident, there is a new pri for each
incident which will be aggregated with other them at the
end of every billing cycle. Figure 14 presents an enhanced
SLA data model, which accommodates the following:

Breach categories
The SLA data model considers a complex SLA agreement
that covers an end-to-end IoT system. The complexity is
drawn from the fact that the SLA, presented in this paper,

Fig. 14 Enhanced Data Model for Evaluation Compliance over Blockchain

Page 17 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

covers various breach categories bci ∈ BC , such that each
of them is based on a combination of metrics as shown
in Table 1. Therefore, the proposed SLA data model ena-
bles defining various types of breaches bci ∈ BC based
on multiple quality requirements. Observe Fig. 14 which
associates every bci ∈ BC to multiple quality require-
ments. Moreover, the SLA data model enables assigning
distinctive max tolerance and penalty to every bci ; con-
sidering that each of them has a different criticality level
and, therefore, distinctive consequences.

Performance reports
The enhanced SLA data model accommodate various
breach categories in the form of [bcj : b] , where bcj is a
unique identifier of a breach category, and b is the count
of its occurrence. Caped by the storage capacity, the smart
contract can create as many performance reports as long
as there are incidents reported by the monitoring manager.
Section Processing Received Monitoring Metrics further
elaborates the logic of smart contract with performance
reports. Therefore, the performance report does not
consist of the properties validity or compliance status.

Aggregated assessment
The enhanced SLA data model introduces a component
called aggregated assessment. For each billing cycle (i.e.
monthly), the smart contract can create a new aggregated
assessment instance to aggregate all existing performance
reports. As can be seen in the enhanced SLA data model,
it accumulates the total count of compliant cases c and
count of breaches b of each breach category bcj . It also
holds the violation rate vr for breach category against the
total compliant cases c. The smart contract also uses the
aggregated assessment to determine the overall compliance
of the service provider. The validity property reflects the
relevancy of this assessment to the current billing cycle.

Processing received monitoring metrics
Recall that the monitoring manager submits transactions
to the blockchain-side upon the occurrence of an
incident of either B or f. Refer to Algorithm 1 line 24,
which reports a payload of collected metrics in the form
of M = (f , ts, Aedge, Aserver) . Based on the enhanced
SLA data model, this section addresses the limitations
our previous study in [18]. Algorithm 2 overviews a smart
contract method for processing and evaluating received
metrics M. As long as the SLA is valid � = true , it accepts
transactions from the monitoring-side and evaluates
received metrics M against the respective quality
requirements. As a result, the evaluation process classifies
the performance of the IoTSP to be either compliant c or
one of the predefined breach categories bci . Examples of

breach categories are provided in section SLA between
IoTSP and Firefighter Station and illustrated in Table 1.

For every metrics evaluation, the smart contract
creates a new performance record in the form of a tuple
(k + 1, pr, ver) , where

• k + 1 is a unique identifier of the performance report.
• pr is performance report that holds the result of

a metric evaluation against breaches categories
bci ∈ BC.

• ver is version that tracks modifications on the
performance record.

We consider pr to consist of (c , [bcj : b]) where c
indicates the count of compliant cases, and [bcj : b]
indicates a the frequency of an incident belonging to
a breach category, where bcj is a unique identifier of a
breach category, and b is the count of its occurrence.
Example of evaluation outcomes are as follows:

• compliance case: pr ← (1 , ∅).
• breach case: pr ← (∅ , [0002 : 1]).

As Algorithm 2 demonstrates, we opt to avoid the prac-
tice of updating an existing performance report (k , e′, ver′) .
Instead, the proposed design dictates that there must be a
newly created record (k + 1, e, ver) for every subsequent
metric evaluation process. Once an evaluation record is
created, it shall never be updated but may only be used for
query purposes. In this way, we ensure there will always be
one write operation, and therefore the version ver would
not change at all. This perpetually mitigates the issue of
conflicting read-write sets associated with the high rate of
monitoring transactions per block.

Algorithm 2 Evaluation of Received Monitoring Metrics

Compliance assessment and enforcement
The smart contract can be instructed to periodically con-
duct an overall compliance assessment. We consider that
read operations do not cause version modification, and

Page 18 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

thus we do not expect MVCC conflicts. Therefore, the
compliance assessment process should theoretically have
the ability to aggregate all existing performance records
at once (k : pr) | i ≤ k ≤ n | k ∈ N.

Algorithm 3 Concluding Assessment and Enforcement Logic

Algorithm 3 illustrates considering a set of per-
formance records for the compliance assessment;
for example from ki to kn . The overall aim is to cal-
culate the violation rate vr of each breach category
bcj ∈ BC | j ∈ N by examining its ratio against the total

compliance cases. For that, the smart contract examines
every (ki : pr) and query its properties (c , bcj : b)) . It
aggregates the total count of compliance cases, denoted
as tc. Additionally, for every breach category bcj ∈ BC ,
it aggregates the total count of breach cases, denoted as
tb. Afterwards, the violation rate vr of every bcj is calcu-
lated as per Eq. 1 and examined against the respective
max tolerance mt. Note that the total compliance cases
cannot be tc ≮ 1 to prevent division on zero in case of
no breach cases.

The smart contract can take actions based on the out-
comes of the compliance assessment. For example, the
smart contract can determines to terminate the SLA if
the violation rate vr exceeds the max tolerance mr of
any breach category bcj (refer to Algorithm 3 Line 19).
This leads the smart contract to issue a full refund and
halt further metrics evaluations because Algorithm 2
does not process any incidents if the SLA is termi-
nated. Otherwise, the smart contract can the aggregated
assessment to make an informed decision on whether
to enforce a penalty on the escrow account. Finally,
the smart contract removes all processed performance
records for the state storage to avoid reusing them for
the next aggregated assessment. However, they still
remain permanently stored on the blockchain for future
auditing purposes.

Experiment and evaluation of the blockchain
performance
The purposes of the experiment is to evaluate whether
the proposed smart contract design proves to mitigate
MVCC conflict issues while maintaining sound
performance. Therefore, we experiment and stress the
proposed approach to investigate in terms of throughput
and latency. More specifically, this experiment is
concerned with two tasks assigned to the smart contract,
which are metrics evaluation and SLA compliance
assessment as in Algorithm 2 and Algorithm 3;
respectively.

Table 2 illustrates the deployment of the blockchain
network as well as relevant configurations and
specifications. We choose to deploy the blockchain
network, as in Fig. 6, on cloud infrastructure, as specified
in Table 2. We experiment on the latest HLF version, as
of writing this thesis, and adopted the recommended
consensus protocol; namely RAFT [30]. All default
parameters of the test network provided by HLF
remains intact except the block batching configurations.
We employ a blockchain benchmarking tool called
Hyperledger Caliper for experimenting the performance
of the enhanced compliance assessment approach. The
experiment considers the following:

Table 2 Blockchain deployment and configurations

Element Description

Hyperledger Fabric Fabric version (2.3.2)

Blockchain Network See Fig. 6

Blocks Frequency Configuration - Transactions per Block: 10. -
Timeout: 1s. - No size restrictions.

Smart Contract Language Java

Chaincode Timeout 30 seconds

Benchmark Tool - Hyperledger Caliper V0.4.2 - 5
workers

Consensus Protocol Raft

State Storage CouchDB

Resources Allocation - 32 x vCPU Intel(R) Xeon(R) Gold
6140 @2.30GHz - 64GB RAM.

Operating System and Docker - Ubuntu Linux 20.04.2 (64-bit).
- Docker Version 20.10.6 (No
restrictions on resources usage).

Page 19 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

• for each transaction execution, Algorithm 2 con-
ducts a limited number of read operations (e.g.
query quality requirements) and a single write
operation (creating evaluation record). However,
this algorithm is expected to be invoked very fre-
quently; whenever the monitoring-side encounters
an incident that requires attention. According to
[31], using 5 worker for experimenting high rates
of transactions seems to produce realistic results.
We validated that from our side, and thus we use 5
workers for submitting transaction from the moni-
toring-side.

• for each transaction execution, Algorithm 3,
conducts a massive number of read operations
on existing evaluation records, as explained in
section Compliance Assessment and Enforcement.
It then results in a limited number of write
operations which can include persisting the
compliance assessment on the ledger, and handling
the escrow account for enforcement purposes.
Noteworthy mentioning that, this algorithm is
only executed on limited occasions. For example,
monthly billing, conducing payment, etc.

Fixed total transactions and variable rates
For Algorithm 2, we examine how it performs under vari-
ous rates of transactions per second. We set 10 rounds, as
in Fig. 15, where we fix total transactions to 1000. How-
ever, we increase the transaction submission rates by
100 Tps (Transactions per second) for each subsequent
round. The aim is to investigate for each test round: (i)
the send rate can be generated from the monitoring-side;

(ii) the average throughput that can be archived at the
blockchain-side; and (iii) the average round-trip transac-
tions latency. We aim also to find out whether any of the
transaction would encounter unforeseen failure such as
MVCC conflicts.

As shown in Fig. 15, for all test rounds, there was
no transaction failure at all. The send rate tends to be
identical to the intended transactions rate until the sev-
enth round, after which the send rate gradually exhibits
a modest degradation. With regard to throughput,the
benchmark shows an identical throughput to the send
rate for the three first rounds. Thereafter, we observe
an increasing transaction processing time and thus less
throughput compared to send rate. Both studies in this
[32, 33] justify this situation due the increasing queue
length of transactions waiting for VSCC validation. In a
study by [34], the long queue of transaction can be also
attributed to a delay within the blockchain network. Nev-
ertheless, the throughput flattened out for the rest of test
round at approximately 380 transactions/second, with
unremarkable changes. In a similar manner, the latency
remains very low without major difference for the first 4
test round. Thereafter, it exhibits the possibility to break
beyond 1 second, which is the max timeout set for block
batching.

Variable total transactions and fixed average rate
To verify our outcomes, we fixed the send rate to
500 transaction/second, which is more than the best
achieved throughput from the above benchmark.
We relaxed the total transactions with a minimum of
1,000 and maximum of 10,000, where we increase 1000
transactions for each test round. The aim to see whether

Fig. 15 Algorithm 2 performance: processing received metrics at variable rates and fixed total of 1000 transactions

Page 20 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

this relaxation would achieve better throughput or does
it have a negative impact on it. We also investigate how
to this relaxation can be correlated to latency. A shown
in Fig. 16, there is no significant disruption in the
throughput rate for all test rounds as long as the send
rate is the same. Nevertheless, we observe an overall
linear latency increase influenced by the linear increase
workload of transactions. Consider the last round of
Fig. 15 with first round of Fig. 16 , were all try to submit
1000 transaction/second but at different send rates. we
observe that the latter achieve better latency than the
former, which confirms a positive correlation between
the send rate and expected latency [32, 33, 35].

All in all, the experiment reveals the ability of Algo-
rithm 2 to accommodate a high rate of transactions
without encountering MVCC conflicts. It also prom-
ises a sound performance, given the complexity of the

smart contract logic and the blockchain configurations.
We also report that, the experiments altogether did not
consume more than 15% of the allocated resources, as
illustrated in Table 2.

Compliance assessment execution time
Periodically, the smart contract aggregates and con-
sumes a set of evaluation records for compliance
assessment as illustrated in Algorithm 3. As shown
in Fig. 17, we examine average latency of conducting
the compliance on linearly variable number of stored
records; increased by 1000 record for each round. For
each round, we only need one transaction to trigger
the compliance assessment, and thus we only focus on
average latency and omit throughput. We observe that
it exhibits a linear increase as a response to the amount

Fig. 16 Algorithm 2 performance: processing received metrics at fixed rate of 500 transactions and variable total transactions

Fig. 17 Latency for executing Algorithm 3 on variable collection of evaluation records stored on HLF state storage

Page 21 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

of stored evaluation records. Overall, the smart contract
proved to execute 10,000 evaluation records within no
more 3.5 seconds. We deem this to be satisfactory, given
that it is a non frequent task conducted occasionally, for
billing and concluding purposes, over a massive number
of records. We also do not normally expect such num-
ber of records unless there is a breach B or a fire event f,
as specified per section Monitoring-side.

Conclusion and future work
This paper presented a blockchain-based monitoring
approach in the context of IoT application performance
and SLA compliance. It focuses on shifting distrusted
SLA-related processes such as metrics evaluation and
compliance assessment to blockchain based smart
contracts. It examines and discusses critical aspects
and considerations at two key components of our
framework; the monitoring-side, and the blockchain-
side. While conventional software design strategies
have proven to work well for centralised applications,
we cannot safely assume the same in the context of
distributed blockchain applications. As demonstrated
in this work, it is vital to consider unique blockchain
characteristics when designing a blockchain-based
solution, such as transaction processing, execution
behaviour, configurations and implemented protocols.
This paper draws attention to the high rate of
transactions emitted from IoT applications and
consequently any deployed performance monitoring
tools. For IoT applications that typically involve such
high data rates, our work aims to resolve read-write
multiversion concurrency control (MVCC) conflicts
typically encountered in blockchain applications, while
maintaining sound performance. From the monitoring-
side of our framework, this paper demonstrates how we
can determine the most critical co-factors of relation
to SLA compliance assessment. It designs a monitoring
architecture and reporting mechanism, which not
only accounts for possible failed transactions, but also
engineers a mechanism for metrics collection and
reporting, with the aim to avoid overwhelming the
blockchain-side with unnecessary transactions. From
the blockchain-side of our framework, the approach
of this paper revolves around a simple, yet effective
principle that segregates between read and write
operations at both levels; the smart contract design and
data representation at the state storage.

Our work paves the way for future work to
investigate improving the performance at the HLF
infrastructure level. For example, finding optimal block
configurations, which plays a vital role for throughput
and latency. HLF modularity makes it also interesting
to study the impact of different HLF’s aspects on the

overall performance, such as network size in terms of
organisations, endorsing and committing peers. There
is also the ordering service and employed consensus
mechanism, chaincode configurations, smart contract
programming languages and others.

Acknowledgements
We thank the Program Committee of IEEE SmartIoT for inviting us to extend
our previous study [36] and submit to this Journal.

Authors’ contributions
 Ali Alzubaidi, as PhD (and post-PhD) researcher, performed detailed
research including background research, literature review, methodology,
implementation, and experimental evaluation, as well as writing of original
drafts and later revisions. Karan Mitra: suggestions for literature review,
methodology and experimental evaluation, PhD project supervision, and
writing-reviewing and editing. Ellis Solaiman: project primary investigator,
funding aquisition, and primary PhD project supervisor, suggestions for
literature review, methodology and experimental evaluation, writing,
reviewing and editing.

Funding
 This work is funded in part by the EPSRC, under grant number EP/V042017/1.
Scalable Circular Supply Chains for the Built Environment.

Availability of data and materials
All relevant materials are publicly available on a GitHub repository5 since 01/
December/2021.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 30 November 2021 Accepted: 14 February 2023

References
 1. Huang J, Nicol DM (2013) Trust mechanisms for cloud computing. J

Cloud Comput 2(1):9. http:// journ alofc loudc omput ing. sprin gerop en.
com/ artic les/ 10. 1186/ 2192- 113X-2-9. Accessed 14 Oct 2020

 2. Philipp Y, M Butler J, Theilmann W, Yahyapour R (2011) Service Level
Agreements for Cloud Computing. Springer New York, New York. http://
link. sprin ger. com/ 10. 1007/ 978-1- 4614- 1614-2. Accessed 14 Feb 2020

 3. Wu L, Buyya R (2010) Service Level Agreement (SLA) in Utility Computing
Systems. Grid Cloud Comput 286–310. https:// arxiv. org/ abs/ 1010. 2881v1

 4. ISO () ISO/IEC 19086-2:2018 - Cloud computing — Service level agree-
ment (SLA) framework — Part 2: Metric model. https:// www. iso. org/
stand ard/ 67546. html. Accessed 17 Jan 2022

 5. Comuzzi M, Kotsokalis C, Spanoudakis G, Yahyapour R (2009) Establishing
and Monitoring SLAs in Complex Service Based Systems. In: 2009 IEEE
International Conference on Web Services, IEEE, pp 783–790. http:// ieeex
plore. ieee. org/ docum ent/ 51758 97/. Accessed 12 Apr 2018

 6. Bakalos N, Kyriazis D, Protonotarios E, Varvarigou T, Barreto O, Juan A,
Bantouna A, Demestichas P, Georgakopoulos A, Stamati T, Tsagkaris K, Vla-
cheas P (2016) SLA specification and reference model. https:// ec. europa.
eu/ resea rch/ parti cipan ts/ docum ents/ downl oadPu blic? docum entIds=
08016 6e5a0 7549a f& appId= PPGMS. Accessed on 30 Nov 2020

 7. Habib S, Hauke S, Ries S, Mühlhäuser M (2012) Trust as a facilitator in
cloud computing: a survey. J Cloud Comput: Adv Syst Appl 1(1):19.
http:// journ alofc loudc omput ing. sprin gerop en. com/ artic les/ 10. 1186/
2192- 113X-1- 19. Accessed 14 Oct 2020

5 https:// github. com/ aakzu baidi/ Block chain QoT

http://journalofcloudcomputing.springeropen.com/articles/10.1186/2192-113X-2-9
http://journalofcloudcomputing.springeropen.com/articles/10.1186/2192-113X-2-9
http://link.springer.com/10.1007/978-1-4614-1614-2
http://link.springer.com/10.1007/978-1-4614-1614-2
https://arxiv.org/abs/1010.2881v1
https://www.iso.org/standard/67546.html
https://www.iso.org/standard/67546.html
http://ieeexplore.ieee.org/document/5175897/
http://ieeexplore.ieee.org/document/5175897/
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5a07549af&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5a07549af&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5a07549af&appId=PPGMS
http://journalofcloudcomputing.springeropen.com/articles/10.1186/2192-113X-1-19
http://journalofcloudcomputing.springeropen.com/articles/10.1186/2192-113X-1-19
https://github.com/aakzubaidi/BlockchainQoT

Page 22 of 22Alzubaidi et al. Journal of Cloud Computing (2023) 12:50

 8. Uriarte RB, de Nicola R, Kritikos K (2018) Towards Distributed SLA Manage-
ment with Smart Contracts and Blockchain. In: 2018 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom),
IEEE, pp 266–271. https:// ieeex plore. ieee. org/ docum ent/ 85910 28/.
Accessed 16 June 2019

 9. Hussain W, Hussain FK, Hussain OK (2014) Maintaining Trust in Cloud
Computing through SLA Monitoring. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol 8836, Springer Verlag, pp 690–697.
http:// link. sprin ger. com/ 10. 1007/ 978-3- 319- 12643-2_ 83. Accessed 30
Mar 2020

 10. Rana OF, Warnier M, Quillinan TB, Brazier F, Cojocarasu D (2008) Managing
Violations in Service Level Agreements. In: Grid Middleware and Services,
Springer US, Boston, pp 349–358. http:// link. sprin ger. com/ 10. 1007/ 978-0-
387- 78446-5- 23. Accessed 21 May 2019

 11. Kyriazis D (2013) Cloud Computing Service Level Agreements Exploita-
tion of Research Results. European Commission Directorate General
Communications Networks, Content and Technology Unit E2 - Software
and Services, Cloud, Tech. rep. https:// ec. europa. eu/ digit al- single- market/
en/ news/ cloud- compu ting- servi ce- level- agree ments- explo itati on- resea
rch- resul ts

 12. Labidi T, Mtibaa A, Gaaloul W, Tata S, Gargouri F (2017) Cloud SLA Mod-
eling and Monitoring. In: 2017 IEEE International Conference on Services
Computing (SCC), IEEE, pp 338–345. http:// ieeex plore. ieee. org/ docum
ent/ 80350 03/. Accessed 12 Oct 2017

 13. Alzubaidi A, Solaiman E, Patel P, Mitra K (2019) Blockchain-Based SLA
Management in the Context of IoT. IT Prof 21(4):33–40. https:// ieeex plore.
ieee. org/ docum ent/ 87640 77/. Accessed 13 Nov 2019

 14. Scheid EJ, Rodrigues BB, Granville LZ, Stiller B (2019) Enabling dynamic
SLA compensation using blockchain-based smart contracts. In: 2019
IFIP/IEEE Symposium on Integrated Network and Service Management,
IM 2019, pp 53–61. https:// ieeex plore. ieee. org/ docum ent/ 87178 59.
Accessed 17 May 2021

 15. OMG Cloud Working Group (2019) Practical Guide to Cloud Service
Agreements Version 3.0. Object Management Group, Tech. rep. https://
www. omg. org/ cloud/ deliv erabl es/ Pract ical- Guide- to- Cloud- Servi ce-
Agree ments. pdf

 16. Neidhardt N, Köhler C, Nüttgens M (2018) Cloud Service Billing and
Service Level Agreement Monitoring based on Blockchain. EMISA Forum
38:46–50. http:// ceur- ws. org/ Vol- 2097/ paper 11. pdf. Accessed 02 Aug
2021

 17. Sunyaev A (2020) Distributed Ledger Technology. Internet Comput
265–299. https:// link. sprin ger. com/ chapt er/ 10. 1007/ 978-3- 030- 34957-8-
9. Accessed 06 Jan 2022

 18. Alzubaidi A, Mitra K, Patel P, Solaiman E (2020) A Blockchain-based
Approach for Assessing Compliance with SLA-guaranteed IoT Services.
In: 2020 IEEE International Conference on Smart Internet of Things
(SmartIoT), IEEE, pp 213–220. https:// ieeex plore. ieee. org/ docum ent/
91923 98/. Accessed 02 Dec 2020

 19. Chandrasekar A, Chandrasekar K, Mahadevan M, Varalakshmi P (2012)
QoS Monitoring and Dynamic Trust Establishment in the Cloud. Springer,
Berlin, Heidelberg, pp 289–301

 20. Zhou H, de Laat C, Zhao Z (2018) Trustworthy Cloud Service Level Agree-
ment Enforcement with Blockchain Based Smart Contract. In: 2018 IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom), IEEE, pp 255–260. https:// ieeex plore. ieee. org/ docum ent/
85910 26/. Accessed 16 June 2019

 21. Kochovski P, Stankovski V, Gec S, Faticanti F, Savi M, Siracusa D, Kum S
(2020) Smart Contracts for Service-Level Agreements in Edge-to-Cloud
Computing. J Grid Comput 18(4):673–690. https:// doi. org/ 10. 1007/
s10723- 020- 09534-y

 22. Uriarte RB, Zhou H, Kritikos K, Shi Z, Zhao Z, De Nicola R (2021) Distrib-
uted service-level agreement management with smart contracts and
blockchain. Concurr Comput: Pract Experience 33(14). https:// onlin elibr
ary. wiley. com/ doi/ 10. 1002/ cpe. 5800. Accessed 23 Oct 2021

 23. Mubeen S, Asadollah SA, Papadopoulos AV, Ashjaei M, Pei-Breivold H,
Behnam M (2018) Management of Service Level Agreements for Cloud
Services in IoT: A Systematic Mapping Study. IEEE Access 6:30184–30207.
https:// ieeex plore. ieee. org/ docum ent/ 80165 58/. Accessed 28 Jan 2020

 24. Van der Wees Arthur, Daniele C, Jesus L, Edwards Mike, Schifano Nicholas,
Maddalena SL (2014) Cloud Service Level Agreement Standardisation

Guidelines. https:// ec. europa. eu/ digit al- single- market/ en/ news/ cloud-
servi ce- level- agree ment- stand ardis ation- guide lines. Accessed 13 May
2020

 25. Pandey AK, G ND, K S (2021) SLA Violation Detection and Compensation
in Cloud Environment using Blockchain. In: 2021 12th International Con-
ference on Computing Communication and Networking Technologies
(ICCCNT), IEEE, pp 1–6. https:// ieeex plore. ieee. org/ docum ent/ 95801 34/.
Accessed 15 Jan 2022

 26. Brazil B (2018) Prometheus: Up and Running: Infrastructure and Applica-
tion Performance Monitoring. O’Reilly Media, Inc. https:// www. oreil ly.
com/ libra ry/ view/ prome theus- up/ 97814 92034 131/

 27. Androulaki E, Barger A, Bortnikov V, Cachin C, Christidis K, De Caro A,
Enyeart D, Ferris C, Laventman G, Manevich Y, Muralidharan S, Murthy
C, Nguyen B, Sethi M, Singh G, Smith K, Sorniotti A, Stathakopoulou C,
Vukolić M, Cocco SW, Yellick J (2018) Hyperledger fabric. In: Proceedings
of the Thirteenth EuroSys Conference, ACM, New York, pp 1–15. http://
arxiv. org/ abs/ 1801. 10228. http:// dx. doi. org/ 10. 1145/ 31905 08. 31905 38.
https:// dl. acm. org/ doi/ 10. 1145/ 31905 08. 31905 38

 28. Chacko JA, Mayer R, Jacobsen HA (2021) Why Do My Blockchain Transac-
tions Fail? In: Proceedings of the 2021 International Conference on
Management of Data, ACM, New York, pp 221–234. https:// dl. acm. org/
doi/ 10. 1145/ 34480 16. 34528 23. Accessed 29 Apr 2021

 29. Meir H, Barger A, Manevich Y, Tock Y (2019) Lockless Transaction Isolation
in Hyperledger Fabric. In: 2019 IEEE International Conference on Block-
chain (Blockchain), IEEE, pp 59–66. https:// ieeex plore. ieee. org/ docum ent/
89461 57/. Accessed 30 Jan 2020

 30. Ongaro D, Ousterhout J (2014) In Search of an Understandable Consen-
sus Algorithm. In: Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference, ser. USENIX ATC’14. USENIX Association,
USA, p 305–320

 31. Hang L, Kim DH (2021) Optimal blockchain network construction meth-
odology based on analysis of configurable components for enhancing
Hyperledger Fabric performance. Blockchain: Res Appl 2(1):100009.
https:// linki nghub. elsev ier. com/ retri eve/ pii/ S2096 72092 10000 4X.
Accessed 15 Mar 2022

 32. Kuzlu M, Pipattanasomporn M, Gurses L, Rahman S (2019) Performance
Analysis of a Hyperledger Fabric Blockchain Framework: Throughput,
Latency and Scalability. In: 2019 IEEE International Conference on Block-
chain (Blockchain), IEEE, pp 536–540. https:// ieeex plore. ieee. org/ docum
ent/ 89462 22/. Accessed 15 Feb 2020

 33. Thakkar P, Nathan S, Vishwanathan B (2018) Performance Benchmarking
and Optimizing Hyperledger Fabric Blockchain Platform. arXiv preprint
arXiv: 1805. 11390

 34. Sukhwani H, Wang N, Trivedi KS, Rindos A (2018) Performance Modeling
of Hyperledger Fabric (Permissioned Blockchain Network). In: 2018 IEEE
17th International Symposium on Network Computing and Applications
(NCA), IEEE, pp 1–8. https:// ieeex plore. ieee. org/ docum ent/ 85480 70/.
Accessed 17 Apr 2019

 35. Baliga A, Solanki N, Verekar S, Pednekar A, Kamat P, Chatterjee S (2018)
Performance Characterization of Hyperledger Fabric. In: 2018 Crypto
Valley Conference on Blockchain Technology (CVCBT), IEEE, pp 65–74.
https:// ieeex plore. ieee. org/ docum ent/ 85253 94/. Accessed 17 Apr 2019

 36. Alzubaidi A, Mitra K, Solaiman E (2021) Smart Contract Design Considera-
tions for SLA Compliance Assessment in the Context of IoT. In: 2021 IEEE
International Conference on Smart Internet of Things (SmartIoT), IEEE, pp
74–81. https:// ieeex plore. ieee. org/ docum ent/ 95561 77/. Accessed 30 Nov
2021

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://ieeexplore.ieee.org/document/8591028/
http://link.springer.com/10.1007/978-3-319-12643-2_83
http://link.springer.com/10.1007/978-0-387-78446-5-23
http://link.springer.com/10.1007/978-0-387-78446-5-23
https://ec.europa.eu/digital-single-market/en/news/cloud-computing-service-level-agreements-exploitation-research-results
https://ec.europa.eu/digital-single-market/en/news/cloud-computing-service-level-agreements-exploitation-research-results
https://ec.europa.eu/digital-single-market/en/news/cloud-computing-service-level-agreements-exploitation-research-results
http://ieeexplore.ieee.org/document/8035003/
http://ieeexplore.ieee.org/document/8035003/
https://ieeexplore.ieee.org/document/8764077/
https://ieeexplore.ieee.org/document/8764077/
https://ieeexplore.ieee.org/document/8717859
https://www.omg.org/cloud/deliverables/Practical-Guide-to-Cloud-Service-Agreements.pdf
https://www.omg.org/cloud/deliverables/Practical-Guide-to-Cloud-Service-Agreements.pdf
https://www.omg.org/cloud/deliverables/Practical-Guide-to-Cloud-Service-Agreements.pdf
http://ceur-ws.org/Vol-2097/paper11.pdf
https://link.springer.com/chapter/10.1007/978-3-030-34957-8-9
https://link.springer.com/chapter/10.1007/978-3-030-34957-8-9
https://ieeexplore.ieee.org/document/9192398/
https://ieeexplore.ieee.org/document/9192398/
https://ieeexplore.ieee.org/document/8591026/
https://ieeexplore.ieee.org/document/8591026/
https://doi.org/10.1007/s10723-020-09534-y
https://doi.org/10.1007/s10723-020-09534-y
https://onlinelibrary.wiley.com/doi/10.1002/cpe.5800
https://onlinelibrary.wiley.com/doi/10.1002/cpe.5800
https://ieeexplore.ieee.org/document/8016558/
https://ec.europa.eu/digital-single-market/en/news/cloud-service-level-agreement-standardisation-guidelines
https://ec.europa.eu/digital-single-market/en/news/cloud-service-level-agreement-standardisation-guidelines
https://ieeexplore.ieee.org/document/9580134/
https://www.oreilly.com/library/view/prometheus-up/9781492034131/
https://www.oreilly.com/library/view/prometheus-up/9781492034131/
http://arxiv.org/abs/1801.10228
http://arxiv.org/abs/1801.10228
http://dx.doi.org/10.1145/3190508.3190538
https://dl.acm.org/doi/10.1145/3190508.3190538
https://dl.acm.org/doi/10.1145/3448016.3452823
https://dl.acm.org/doi/10.1145/3448016.3452823
https://ieeexplore.ieee.org/document/8946157/
https://ieeexplore.ieee.org/document/8946157/
https://linkinghub.elsevier.com/retrieve/pii/S209672092100004X
https://ieeexplore.ieee.org/document/8946222/
https://ieeexplore.ieee.org/document/8946222/
http://arxiv.org/abs/1805.11390
https://ieeexplore.ieee.org/document/8548070/
https://ieeexplore.ieee.org/document/8525394/
https://ieeexplore.ieee.org/document/9556177/

	A blockchain-based SLA monitoring and compliance assessment for IoT ecosystems
	Abstract
	Introduction
	Related works
	Preliminaries
	Hypothetical IoT scenario
	Fire event journey
	SLA between IoTSP and firefighter station

	Architecture overview
	Monitoring-side
	Blockchain-side

	Monitoring mechanism and considerations
	Determining contributing factors to compliance status
	Monitoring mechanism design and implementation
	Metrics instrumentation and exporting
	Edge-side exporter
	Server-side exporter

	Metrics collection
	Validating the monitoring approach

	Blockchain-based compliance assessment approach
	MVCC impact on high-throughput transactions
	Enhanced compliance data model
	Breach categories
	Performance reports
	Aggregated assessment

	Processing received monitoring metrics
	Compliance assessment and enforcement

	Experiment and evaluation of the blockchain performance
	Fixed total transactions and variable rates
	Variable total transactions and fixed average rate
	Compliance assessment execution time

	Conclusion and future work
	Acknowledgements
	References

