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Abstract

The next-generation cyber-physical systems (CPSs) will not only be
limited to industries but will span across multiple application-areas re-
garding smart cities and regions. These CPSs will leverage the recent
advancements in the areas of cloud computing, Internet of Things and
big data to provision citizen-centric applications and services such as
smart hybrid energy grids, smart waste management, smart healthcare
and smart transportation. Challenges regarding context-awareness, qual-
ity of service and quality of experience, mobility management, middleware
platforms, service level agreements, trust, and privacy needs to be solved
to realize such CPSs. This chapter discusses these challenges in detail and
proposes ICICLE - a context-aware IoT-enabled cyber-physical system as
a blueprint for next-generation CPSs.

1 Introduction
Cyber-physical systems (CPSs) tightly integrate computation with physical pro-
cesses [6]. CPSs encompass computer systems including physical and virtual
sensors and actuators connected via communication networks. These computer
or cyber systems monitor, coordinate and control the physical processes, typi-
cally via actuators, with possible feedback loops where physical processes affect
computation and vice versa [6]. CPSs are characterized by stability, perfor-
mance, reliability, robustness, adaptability, and efficiency while dealing with
the physical systems [41, 27].

CPSs are typically associated with tightly-coordinated industrial systems
such as manufacturing [27, 42]. Currently we are at the cusp of witnessing the
next generation CPS that not only span industrial systems, but also include
wide application-areas regarding smart cities and smart regions [5]. The next
generation CPSs are expected to leverage the recent advancements in cloud
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computing [21], Internet of Things (IoT) [13], and big data [44, 8] to provision
citizen-centric applications and services such as smart hybrid energy grids, smart
waste management, smart transportation, and smart healthcare IoT. [13] has
emerged as a new paradigm to connect objects such as sensors and actuators to
the Internet to provide services in the above mentioned application areas.

Big data is referred to as data that cannot be processed on a system under
use [44]. For example, a Boeing aircraft engine produces ten terabytes of data
every thirty minutes. This data cannot be processed on a typical mass-produced
desktop and laptop, and therefore considered as big data. Cisco predicts that
by the year 2020, there will be fifty billion devices connected to the Internet1; in
the year 2021, 847 zettabytes of data will be produced by IoT applications2. Big
data can be valuable if we can efficiently use raw sensor values (which are often
misunderstood, incomplete and uncertain [30]) or context attribute values 3 to
determine meaningful information or real-life situations. This necessitates the
development of novel context-aware systems that harness big data for context-
aware reasoning in a CPS. Context-aware systems provide methods to deal with
raw sensor information in a meaningful manner under uncertainty and provide
mechanisms for efficient context collection, representation and processing. Big
data context reasoning may require the use of a large number of computational
and software resources such as CPU, memory, storage, networks, and efficient
software platforms to execute data processing frameworks such as MapReduce.

The cloud computing paradigm enables provisioning of highly available, re-
liable, and cheaper access to application (such as big data applications) and ser-
vices over the network. National Institute of Standards and Technology (NIST)
define cloud computing as [21]: “Cloud computing is a model for enabling ubiq-
uitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort or
service provider interaction.”

Cloud computing is characterized by [21]: on-demand self service where
cloud resources such as compute time, memory, storage and networks can be
provisioned automatically, without human intervention; broad network access
ensures that the cloud resources are provisioned over the network and can be
accessed by myriad devices including smart phones, tablets, and workstations;
resource pooling is the ability to share cloud resources with multiple customers
at the same time; this is achieved via virtualization where cloud (physical) re-
sources are partitioned into multiple virtual resources [3]. These virtualized re-
sources are then shared with multiple users using the multi-tenant model. Based
on the usage of these resources, the customer is charged on pay–as-you-go basis;

1https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
[Online], access date: 2 July 2020

2https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-
index-gci/white-paper-c11-738085.html#_Toc503317525 [Online], access date: 8 June
2020.

3A context attribute is the data element at a particular time instance that is used to infer
a real-life situation(s) [30].
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rapid elasticity is the ability of the system to scale out (add resources) or scale
in (release resources) based on the demands posed by application and services
workloads. Elasticity is one of the definitive property of cloud computing as it
gives the illusion of infinite capacity to the customers; measured services ensure
transparency for both the provider and the customer as the resource usage can
be monitored, metered and logged that can be used for resource optimization
and billing.

A recent joint report from NICT and NIST [37] aims to define an integrated
cyber-physical cloud system (CPCC) to develop a robust disaster management
system. This report defines CPCC as “a system environment that can rapidly
build, modify and provision auto-scale cyber-physical systems composed of a set
of cloud computing-based sensor, processing, control and data-services”. The
report argues that IoT-based cyber-physical cloud system may offer significant
benefits such as ease of deployment, cost efficiency, availability and reliability,
scalability, ease of integration [37]. Xuejun et al. [41] and Yao et al. [42]
assert the need to harness the recent advances in the areas of cloud computing,
IoT, and CPS and integrate them to realize next-generation CPS. Therefore,
the overall aim of an IoT-based cyber-physical system would be an efficient
integration of cyber objects with cloud computing to manage physical processes
in the real world.

This chapter proposes ICICLE: A Context-aware IoT-based Cyber-Physical
System that integrates areas such as cloud computing, IoT, and big data to
realize next-generation CPS. This chapter also discusses significant challenges
in realizing ICICLE.

2 ICICLE: A Context-aware IoT-enabled Cyber-
Physical System

Figure 1 presents our high-level architecture for context-aware IoT-based cyber-
physical system. The figure shows the cyber and physical systems and the in-
teraction between them. The cyber system consists of the cloud infrastructure
hosting software components such as those related to context collection, process-
ing and reasoning, and application monitoring. The physical system involves
IoT devices such as sensors and actuators that are connected to cyber systems
via IoT gateways or directly. We now discuss ICICLE in detail.

Devices/Things: The IoT application components, the network, and the
cloud form the cyber part of the system, whereas, the sensors and actuators
constitute the physical part of the system as they are responsible for sensing
the environment and controlling the physical processes. As we expect a large
number of IoT devices to be deployed in application areas regarding smart
cities, it is highly likely that many of these devices may produce a similar type
of data. For example, outside temperature sensors placed on the lamp posts, on
public and private buildings produce temperature data. The raw data sensed
and collected from these devices can be used to determine the temperature
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Figure 1: ICICLE: Context-aware IoT-enabled Cyber-Physical System.

at the same location, such as, for a particular suburb; these sensors can also
be clubbed together to formulate a virtual IoT device that can be integrated
as part of ICICLE as a cyber component. It is important to note that virtual
sensors may also encompass information for various sources such as online social
networks (e.g., Facebook and Twitter) [37], as well as open data published by
governments, municipalities, as well as industries. In ICICLE, the IoT devices
may connect to a gateway or directly to the Internet via multiple access network
technologies such as WiFi, ZigBee, LoRaWAN, GPRS, and 3G. Further, the IoT
devices may use a wide variety of application layer protocols such as HTTP,
CoAP, MQTT, OMA Lightweight M2M, XMPP, and WebSocket [4, 14]. For
each application layer protocol, there are plugins deployed at the sensor/gateway
and the applications running in the clouds. The plugins encode and decode the
sensor data as per requirements.

Services: The data collected from the IoT device is sent to the cloud dat-
acenters for processing and storage. The data retrieval from the IoT devices
can be both pull and push-based and can also be done via the publish-subscribe
system [4]. In the pull-based approach, the IoT devices themselves or they
connected via the gateway can offer an endpoint (via uniform resource locator
(URL) or directly via an IP address) for data access. The applications (stan-
dalone applications, middleware such as FIWARE4, and virtual sensors) can
then fetch the data directly from the endpoint. In the push-based approach,
the data can be sent directly from the IoT devices/gateway to the applications
hosted on the clouds. In the publish-subscribe system, an entity-broker is in-
volved. The IoT device/gateway sends the data to the topics managed by the

4http://www.fiware.org. Access date: 19th June 2020.
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Figure 2: Steps to achieve context-awareness.

broker. As soon as the IoT device/gateway sends the new data to the broker
on a specific topic, the broker publishes the data and send it to the subscribing
applications or the virtual sensors.

Context-awareness: ICICLE considers context-awareness as the core tech-
nology that enables operational efficiency and intelligence. According to Dey [7]
“Context is any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and applica-
tions themselves.” As context-awareness deals with context reasoning to convert
raw sensor data to meaningful information (situations), it can be beneficial in
a large number of application domains such as medicine, emergency manage-
ment, waste management, farming and agriculture, and entertainment [33]. For
example, processing of raw context attribute values on the sensor/gateway may
lead to a significant reduction in raw data transfer between the sensors and
the applications running on clouds, as only relevant information is transferred.
Context reasoning assists in reasoning about conflicting and incomplete infor-
mation that is prevalent in IoT environments due to factors such as to sensor
heterogeneity, data loss due to network congestion and wireless signal impair-
ments such as signal attenuation, reflection and scattering, and manufacturing
defects and variation in sensors calibration. Context reasoning may lead to
the discovery of new knowledge that may be otherwise impossible when dealing
with raw information by applying A.I. algorithms. Context-awareness may lead
to personalization. For instance, consider a medical CPS [18] where based on
the context-aware inference of user’s daily activity (using data from a plethora
of sensors) [35], his/her medicine dosage can be regulated by recommending
which and what quantities of medicines to eat at different times of the day.
Context-awareness may lead to security; for example, using context reasoning,
we can determine the set of insecure sensors using metrics such as location, time,
and sensor type [39]. These sensors can be disregarded when data security and
privacy is of utmost concern.

Figure 2 shows a typical context-awareness cycle. First, context attribute
values are sensed from the environment. Second, context reasoning is per-
formed using the context attribute values and algorithms. Third, actuation
is performed based on the reasoned context. The actuation result, as well as
the corresponding sensed context, may be used to improve context reasoning if
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Figure 3: The context spaces model [30].

deemed necessary. For context-awareness, ICICLE considers the context spaces
model (CSM) for modelling context, as shown in figure 3. The CSM motivates
to reason about raw context attribute values collected from the sensors to deter-
mine possible conflicting context states about the entity (e.g., human, machine
or an application process). These context states are then fused, i.e., some rea-
soning is performed to determine the overall situation of an entity. Typically in
context-aware systems, reasoning can be performed using A.I.-based methods
such as Fuzzy Logic, Bayesian networks and Reinforcement Learning. In ICI-
CLE, context attribute values are collected from multiple sensors and gateways
placed at homes, offices, cars, or in a factory. The raw context collected via the
sensors is pre-processed on the gateway or is sent directly to the clouds run-
ning context-reasoning components. The context-reasoning components execute
algorithms to determine the situation of the cyber-physical environment and to
determine actuation functions to be performed by the actuators. For example,
in a medial CPS, context collected from the sensors placed on the human body
such as heart rate and insulin level is sent to the context-reasoning component
to determine the situation of the patient: “patient requires medicine” or “pa-
tient does not require medicine”. This context reasoning may lead to actuation
decisions: “recommend medicine” or “do not recommend medicine”. Similarly,
context-aware reasoning can be applied within the Industry 4.0 paradigm or
beyond to enable intelligent and efficient factories of the future.

Big data and cloud computing: The integration of IoT and CPS, will
lead to data explosion and is expected to generate big data [44, 8]. Big data
cannot be processed on traditional on-premise systems. Therefore, ICICLE,
at its core incorporates cloud computing, which is expected to be critical for
any future cyber-physical system. As mentioned in section 1, cloud computing
offers highly available, scalable, reliable and cheaper access to cyber resources
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(compute, storage, memory, and network). Therefore, ICICLE hosts nearly all
the cyber components on the clouds such as those related to context-awareness.
ICICLE may incorporate public, private or hybrid clouds depending on the ap-
plication use case. For example, consider a medical CPS mentioned above, due
to privacy and security requirements regarding patients data, a CPS may incor-
porate private clouds instead of public clouds. Major public cloud vendors such
as Amazon Webservices5, Google Compute Engine6, and Microsoft Azure7 pro-
vide the big data functionality. These cloud vendors offer ready-to-use, scalable
and highly available big data stacks that can be used by the context reasoning
components. The big data stack typically includes highly distributed file system
(HDFS)8, Apache Spark9 or Apache Hadoop10 as the data (context) processing
frameworks. Depending on the type of CPS application domain, the context
reasoning can be performed in near real-time (e.g., using Apache Spark) or in
an offline mode (e.g., using Apache Hadoop).

Mobile cloud computing/edge computing/fog computing: One of
the significant challenges posed by CPS is timely context gathering, storage,
processing, and retrieval. Typically, context is collected from sensors and is
pre-processed at the gateway nodes. The pre-processed context is then trans-
ferred to the clouds for context reasoning which can lead to some actuation in
the physical world. However, the cloud data centers are centralized and dis-
tributed geographically all over the globe; the transfer of context to the clouds
is expensive regarding network latency. From our tests, the average round-trip
time between a gateway node placed in Skellefteå, Sweden (connected via Luleå
University of Technology campus network) and Amazon cloud data center: in
Stockholm, Sweden is approximately 30 ms; in Tokyo, Japan is approximately
300 ms; in Sydney, Australia data center is 400 ms, and the North California,
United States data center is 200 ms. These results suggest that for mission-
critical CPSs such as those related to emergency management and cognitive
assistance, traditional cloud computing may not be best suited [9, 23, 25].

The areas of mobile cloud computing [25]/fog computing [38]/edge comput-
ing [36] bring cloud computing closer to IoT devices. The aim is to solve the
problems regarding network latency and mobility. The premise is that instead
of sending context attribute values to the centralized cloud data centers for
processing, these values are processed at the first network hop itself, i.e., at the
wireless access point, base station or the gateway that has a reasonable compute
and storage capacity. Thereby reducing the network latency by several folds.
This reduction in network latency and the augmentation of computation and
storage capacity will lead to extremely powerful CPSs with near real-time deci-
sion making. These CPSs may involve human-in-the-loop (HTL) and cognitive

5http://aws.amazon.com [ONLINE], Access date: 5th June 2020.
6https://cloud.google.com/compute/ [ONLINE], Access date: 5th June 2020.
7https://azure.microsoft.com/en-us/ [ONLINE], Access date: 5th June 2020.
8https://hadoop.apache.org/docs/current1/hdfs_user_guide.html [ONLINE], Access

date: 5th June 2020.
9https://spark.apache.org/ [ONLINE], Access date: 5th June 2020.

10https://hadoop.apache.org/ [ONLINE], Access date: 5th June 2020.
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decision making leading to the Industry 5.0 revolution.
ICICLE supports mobile cloud computing using M2C2- a mobility manage-

ment system for mobile cloud computing [25]. Using M2C2, ICICLE enables
QoS-aware context processing, storage, and retrieval via edge nodes. M2C2

also supports multihoming and mobility management. In that, if IoT devices
and gateways are mobile and are connected via several access networks such as
WiFi, 4G, and Ethernet, M2C2 can select the best combination of network and
edge/cloud. It can then handoff between the access networks and the clouds for
efficient context processing and storage.

Cloud services: ICICLE is a generic framework and encompasses several
ways to develop and deploy CPS services. For example, via Service Oriented Ar-
chitecture (SOA) [31] or as microservices [15]. A CPS is a complex system and
may include a large number of software components interacting with each other
in complex ways. SOA is an already established paradigm to expose the func-
tionality provided by ICT systems as services. SOA paradigm supports rapid,
secure, on-demand, low cost, low maintenance, and standardized development,
deployment, and access to software services in highly distributed environments
[31], such as cloud systems. In SOA, the software services are developed and
published as loosely-coupled modules. SOA services use simple object access
protocol (SOAP) to communicate with each other.

Further, the services are described using Web services description language
(WSDL). These services published over the Internet can be searched and discov-
ered using Universal Description, Discovery, and Integration (UDDI), ensuring
software re-use. Microservices [15] is a relatively new paradigm that defines
an application as loosely-coupled services that exposes business capabilities to
the outside world; here each service is developed, tested, and deployed individ-
ually without affecting each other. Thereby, microservices inherently support
agile software design. Microservices communicate with each other using ap-
plication programming interfaces (API). ICICLE incorporates several loosely-
coupled software services. For example, the gateways and clouds run the context
collection, context pre-processing service, context reasoning service for context
reasoning; performance monitoring, sensor monitoring, and actuator monitor-
ing service; actuation service; billing service; cloud monitoring service; CPS and
cloud orchestration service, to name a few. These services can be deployed using
SOA or microservices paradigm.

3 Case Study: ICICLE for Emergency Manage-
ment

Let us consider a deep underground mine consisting of several miners extracting
ore such as gold and iron. The mine runs the ICICLE-based emergency manage-
ment system. The ICICLE CPS keeps track of the health of all the miners and
continuously monitor their situation, such as whether they are “safe,” “unsafe,”
or need “evacuation.” The miners use controlled blasting to break away rocks
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and make way for easier digging. Now consider a case that due to blasting,
some rocks fall causing some miners to be trapped under them. In this scenario,
ICICLE must evaluate the overall situation of the disaster area to assist the
responders by providing situational knowledge about which miner needs first
assistance.

Each miner wears safety-related IoT devices such as a helmet, a safety vest,
and an armband. The safety vest incorporates sensors such as electrocardio-
gram (ECG) monitor, heart rate variability (HRV) monitor, and breathing rate
monitor. The armband includes an accelerometer and a temperature gauge.
These IoT devices produce a large number of context attribute values such as
accelerometer, heart rate, and breathing rate values. To determine the miners’
health-related situation, the IoT gateways placed throughout the mine collect
these context attribute values using the context collection service. The context
attribute values are produced at a very high frequency for real-time situation-
awareness. Therefore, the IoT gateways pre-process these values and send them
to the edge nodes present inside the mines at various locations, instead of send-
ing them to the remote clouds for further processing.

The edge nodes and clouds run A.I.-based context reasoning services to de-
termine miners situations. For example, based on the collected context, miner’s
health situation can be determined as “safe” or “unsafe” . If the situation of a
miner is determined to be “unsafe” an alarm notification is triggered by ICICLE.
The alarm notification, along with miner’s location and health state informa-
tion, is sent to the first responders that may help the miner in the shortest time
possible. As emergency management requires a high degree of reliability and
availability, ICICLE runs a large number of orchestration services to monitor
all the edge, cloud and IoT gateway nodes. It also monitors application services
such as context collection and context reasoning services at regular time inter-
vals. Based on the monitored context, ICICLE determines the best edge, and
cloud nodes to run emergency management services.

4 Future Challenges and Directions
Methodology: CPS is inter-disciplinary area encompassing advances in the
disciplines such as mechanical, electrical, control and computer engineering.
Each of these disciplines may have their established views on CPS; therefore
the construction of CPS such as ICICLE necessitates the development of novel
methodologies that brings together the best practices and advancements from
all the disciplines mentioned above [34, 16, 11, 32]. We assert that there is a
need to develop novel methodologies that also consider the integration of cloud
computing, IoT, context-awareness and big data. Rajkumar et al. [34] describe
steps to develop an integrated CPS. These include:

• The use of novel programming models and hardware abstractions;

• The ability to capture the limitations of the physical objects and reflect
those limitations within the cyber world in the form of metrics such as
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complexity, robustness, and security;

• The iterative development of system structure and models;

• Understanding the quantitative tradeoffs between cyber and physical ob-
jects based on specific constraints; and

• Enabling safety, security, and robustness considering uncertainty posed by
real-world scenarios.

We believe these steps can be the starting point to extend or develop additional
methodologies to realize next-generation CPS such as ICICLE.

Quality of Service and Quality of Experience: The end-to-end Quality
of Service (QoS) provisioning in the cloud and IoT-enabled CPS is challenging.
It is mainly due to the stochastic nature of the clouds, and the networks through
data exchange are carried [24, 29]. Further, software systems may also lead to
QoS variability due to their inherent architecture. Regarding networks, IoT
devices may connect to the gateway using wireless access technologies such as
LoRaWAN, WiFi, ZigBee, Bluetooth, and Z-wave. Each of these access net-
work technologies is prone to signal attenuation and signal fading. Further, the
data transmission from the gateway to the cloud via the ISP network, and the
Internet is also prone to network congestion, delay and packet losses. There-
fore, it is imperative to monitor the end to end network QoS [25]. CPS QoS
also depends on clouds performance due to the multi-tenant model of the cloud
systems; where via virtualization, the same underlying hardware is shared via
multiple users. Multi-tenancy ensure economies of scale but may hamper ap-
plications QoS. Therefore, QoS in clouds may not be guaranteed. Application
QoS can be guaranteed to a certain degree when customers are provided with
dedicated hardware and networks within a cloud infrastructure, albeit at higher
costs. Software systems may also hamper the overall QoS due to due to limita-
tions of software libraries and systems that may not be able to avail hardware
performance, this can be due to higher developmental costs of the software sys-
tems, or may be due to improper software design for a particular application
scenario. Therefore, cloud-integrated CPS requires holistic monitoring across
cloud and network stack along with physical devices.

We argue that the success of next-generation CPS hinges on the understand-
ing end-users perception of quality regarding an application or service, or users
quality of experience (QoE) [10]. QoE is often misunderstood and is narrowly
associated with QoS metrics [26]. QoE is users’ perception of underlying QoS
along with a person’s preferences towards a particular object or a service. It
depends on person’s attributes related to his/her expectations, cognitive abili-
ties, behaviour, experiences, object’s characteristics (e.g., mobile device screen
size, and weight) and the environment [26]. Till date, QoE metrics have been
mainly investigated from communication networks, multimedia (such as voice
and media streaming) and gaming perspectives. However, QoE metrics have
not been studied extensively in the context of cloud computing and especially
from IoT perspective which are highly dynamic, stochastic and sophisticated
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systems [22]. There is a need to develop novel QoE models that consider the
entire cloud and IoT ecosystem on which next-generation CPS will be based.
For instance, in the mining disaster use case mentioned above, QoE provisioning
for the responder is critical from him/her to save the lives of the evacuee. CPS
like ICICLE should not only aim to maximize QoS, but also aim to adapt the
content, minimize service disruptions and in the worst-case scenario, provide
graceful degradation of service such that the responders are satisfied with the
CPS and accept it for future use.

Service level agreement (SLA): Ensuring the SLAs in future CPS is
challenging as it involves clouds as well as the IoT. SLA in clouds has been
studied quite extensively [17]. These studies span across all the cloud lay-
ers namely Infrastructure-as-a-Service, Platform-as-a-Service, and Software-as-
a-Service and cover numerous metrics related to performance, cost, security
and privacy, governance, sustainability, and energy efficiency. However, in re-
ality, each cloud vendor offers their own SLAs to their customers and are usu-
ally limited to availability/uptime metric. Further, there is a lack of a unified
SLA framework across cloud providers that hinders cloud adoption. Regarding
IoT applications and services, metrics such as availability, reliability, scalability,
throughput, access time and delay, usability, level of confidentiality have been
studied [1].

To the best of our knowledge, in the context of cloud and IoT integrated CPS,
no standardized SLA framework exists. SLA definition, monitoring, and adher-
ence in CPS can, therefore, be very challenging. Firstly, due to the presence
of a large number of parameters mentioned above and secondly, determining
the right combination of parameters in an IoT application domain can be an
exhaustive task. Cloud-based IoT services can be very complicated as they in-
volve the interconnection of devices to the clouds; and IoT service provisioning
to the end-users via the Internet. Therefore, each of this step may have different
SLAs in place. For instance, stakeholders offering sensor deployment, the In-
ternet service providers (ISP), the cloud providers, and the application/service
providers may each offer different SLAs. Therefore, determining a right SLA
that combines multiple SLAs for end-to-end IoT service provisioning remains a
longer-term and a challenging goal [1].

Trust, privacy and security: Trust, privacy and security: are essential
considerations for a CPS [16]. As discussed above, a CPS consists of several
components (see figure 1) such as sensors, actuators, servers, network switches,
and routers, and myriad applications. Complex interdependencies may exist
between these components; therefore, security-related failure in one component
may propagate to another component. For example, a denial of service attack
that mimics a large number of sensors towards a context collection service may
render it unusable and may not only lead to interruptions in context reason-
ing but may cause a complete halt of the CPS. One can consider this as the
worst-case scenario for any mission-critical CPSs such as the emergency man-
agement CPS mentioned in the previous section. Khaitan and McCalley [16]
also note that installing new software patches to several application components
is challenging due to the time-critical nature of the CPS. CPSs are also prone to
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man-in-the-middle attacks as well as the attacks on physical infrastructure, for
example, smart meters as part of the smart grid CPS can be a target of not only
vandalism but also as part of the targeted cyber attack. We assert that a holistic
approach considering trust, privacy, and security-related challenges should be
considered when building a CPS. In particular, these challenges should be con-
sidered in an end-to-end manner, i.e., starting from the physical devices to the
end-user (humans/machines) and should then be formally verified and tested
using state-of-the-art benchmarks and tools.

Mobility: poses a significant challenge for future CPSs. The users and
devices such as sensors placed on vehicles, smartphones, tablets are expected
to be mobile. For example, consider a healthcare CPS that determines users
health in near real-time and alerts them and their doctors is something extraor-
dinary occurs regarding their health. The users wear products such as Hexoskin
11 to that measure physiological parameters such as breathing rate, heart rate,
acceleration, cadence, heart rate, and ECG. As the users are typically mobile,
for example, they go to their workplace, gym, use public transport, their Hex-
oskin monitors their vital parameters and send the parameter values to their
smartphones; the smartphones then transfer these parameter values via 4G or
WiFi networks to the clouds for processing. The processed data is then either
send back to users smartphones or is sent to their doctors. As the users car-
rying their smartphones are mobile, their smartphones may connect to several
wireless access networks such as WiFi and 4G. These access networks exhibit
stochastic performance characteristics due to issues like signal attenuation, and
reflection; users smartphones may handoff between several access technologies
leading to disconnection [25].

Further clouds may also exhibit stochastic performance characteristics due
to unpredictable workloads and multi-tenancy [19, 24]. Lastly, network link
between the smartphones and the clouds may be congested or maybe far away
(regarding round-trip times) [25] leading to additional transmission delays. All
these factors necessitate efficient mobility management to ensure performance
guarantees [25, 40], One way to deal with the mobility issue is to consider
computation and storage offloading to the edge nodes in conjunction network
mobility management [25]. However, further complications arise regarding data
management, trust, and privacy. Therefore, there is a need to develop novel
CPS-aware mobility management protocols that inherently support QoS, trust,
privacy, and security.

Middleware Platforms: may assist in the integration of IoT, clouds, and
CPS by providing standardized interfaces for data collection, storage, and re-
trieval. Standardized interfaces are essential to deal with heterogeneity in device
types, application and network protocols, software stacks, vendor-specific APIs,
and data models for data representation. Cloud-based IoT middleware plat-
forms may prove to be crucial to integrate cloud systems and IoT to realize
next-generation CPS by solving at least some of the requirements presented
above. In excess of 500 IoT middleware systems exists that integrate IoT de-

11https://www.hexoskin.com/ [ONLINE]. Access date: 1st June 2020.
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vices with clouds [28]. For example, some of the IoT middleware include Xively
12, AWS IoT13, Microsoft Azure IoT HuB14, ThingsBoard15, FIWARE16, Ope-
nIoT17, and Kaa18. It is imperative that IoT middlewares are highly scalable,
reliable, and available and should cater to a large of the application use cases
such as those related to smart cities [8, 2]. To the best of our knowledge, there
is a dearth of research that comprehensively benchmarks the aforementioned
IoT middlewares and presents a selection of them that can be used readily by
either industry and academia. Recently Araujo et al. [2], have presented results
regarding IoT platform benchmarking. However more work is required to build
future cloud-based IoT middleware for CPS.

Context-awareness: is the key to creating value out of the big data origi-
nating from the IoT devices in a CPS. As mentioned above, context reasoning
will enable intelligence in CPSs by dealing with raw, conflicting, and incom-
plete context values. Therefore, novel context reasoning algorithms and frame-
works are required to be integrated with IoT middlewares for intelligent deci-
sion making. In the past two decades, significant advances have been made in
area of context-aware computing. For instance, seminal work done in this area
[7, 30, 12, 43], can be leveraged to build intelligent context-aware CPSs. We be-
lieve their work should be combined with recent advances in big data, artificial
intelligence, and cloud computing to harness their true potential [44, 8]. IoT
brings it own set of challenges due to their expected massive scale deployments.
These challenges include context-aware sensor/actuator/service representation,
discovery and selection [33]. Recent work [20] deals with these challenges. How-
ever, their integration with IoT middlewares and their rigorous testing regarding
scalability and performance is still warranted.

5 Conclusion
Integration of areas such as cloud computing, IoT, and big data is crucial for
developing next-generation CPSs. These CPSs will be a part of future smart
cities and are expected to enhance areas like agriculture, transportation, manu-
facturing, logistics, emergency management, and waste management. However,
building such a CPS is particularly challenging due to a large number of issues
in integrating the above-mentioned areas. This chapter discussed in details sev-
eral such challenges regarding context-awareness, quality of service and quality
of experience, mobility management, middleware platforms, service level agree-
ments, trust, and privacy. This chapter also proposes and develops ICICLE: A

12https://xively.com/ [ONLINE], Access date: 9th July 2020.
13https://aws.amazon.com/iot/ [ONLINE], Access date: 9th July 2020.
14https://azure.microsoft.com/en-us/services/iot-hub/ [ONLINE], Access date: 9th July

2020.
15https://thingsboard.io/ [ONLINE], Access date: 9th July 2020.
16https://www.fiware.org/ [ONLINE], Access date: 9th July 2020.
17http://www.openiot.eu/ [ONLINE], Access date: 9th July 2020.
18https://www.kaaproject.org/ [ONLINE], Access date: 9th July 2020.
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Context-aware IoT-based Cyber-Physical System that integrates cloud comput-
ing, IoT, and big data to realize next-generation CPSs.
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