
ALTRUIST: A Multi-platform Tool for Conducting
QoE Subjective Tests

Henrique Souza Rossi1, Karan Mitra1, Christer Åhlund1, Irina Cotanis2, Niclas Ögren2, Per Johansson2
1Mobile and Pervasive Computing, Department of Computer Science, Electrical and Space Engineering,

Luleå University of Technology, Skellefteå, Sweden
2Infovista, Skellefteå, Sweden

Email: henrique.souza.rossi@ltu.se

Abstract—Quality of Experience (QoE) subjective assessment
often demands setting up expensive lab experiments that involve
controlling several software programs and services. In addition,
these experiments may pose significant challenges regarding man-
agement of testbed software components as they may have to be
synchronized for efficient data collection, leading to human errors
or loss of time. Further, maintaining error-free repeatability
between subsequent subjective tests and comprehensive data
collection is essential. Therefore, this paper proposes, develops
and validates ALTRUIST, a multi-platform tool that assists
the experimenter in conducting subjective tests by controlling
external applications, facilitates data collection and automates
test execution for conducting repeatable subjective tests in broad
application areas.

Index Terms—Subjective tests, Quality of Experience, Experi-
ments, Toolkit, Multimedia, Games, Mixed Reality

2023 15th International Conference on Quality of Multimedia Experience (QoMEX)

I. INTRODUCTION

The extensive progress of multimedia applications, branch-
ing into PC/Mobile/extended reality (XR) games, cloud gam-
ing, and audio and video streaming for entertainment and
communication, among many other forms, create new oppor-
tunities and challenges in studying QoE. In particular, carrying
out subjective tests in the context of the applications mentioned
above usually involves setting up an extensive lab environment
hosting a variety of devices that support the intended studied
media. Subjective tests involve collecting a diverse set of data,
ranging from questionnaires, network traffic, video traffic,
physiological data, and other application-specific data logs,
and most often all in parallel.

It is paramount to follow a rigorous quality data collection
approach for logging, by cataloguing relevant timestamps,
user/test ID, along with other variables that pertain to a
particular test. This imposes challenges to the experimenter
conducting the experiment, as it depends on his/her acuity
to guarantee no mistakes are made. Otherwise, they may
easily translate into experiment data loss or reduced data
quality. Previous works have proposed tools to facilitate QoE
experiments and data collection in the context of passive 2D
video testing [1], [2], and 360 videos [3], [4]. A number
of studies also proposed tools to show questionnaires only
for web browser [5], XR locally [6]–[8] and remotely [9].
Further, some works propose frameworks to easily manage and

customize an experiment locally [10]–[12], or remotely [13],
[14] – all necessitating to be integrated into the testing ap-
plication (e.g., a game) via code. However, those tools do not
have a simplified distributed architecture, that allows executing
tasks (e.g., tracking logs, calling external scripts, or starting
an external application) and exerting some controlling power
over external software independently (e.g., a third-party game
or streaming service). These are important when studying the
impact of external software and services’ influence on users’
QoE.

Contribution: i. This work proposes and develops ALTRU-
IST, a distributed QoE testing tool for conducting subjective
tests efficiently. ALTRUIST minimises data collection errors
across multiple devices connected via a network in a lab envi-
ronment. ALTRUIST was built in Unity1, a game engine that
allows deploying applications on multiple platforms including
PC, Linux, Mac, Android, and others. We leverage this feature,
to create a system that can be deployed on different devices,
as a single application, capable to communicate among them
following a client/server network architecture; and ii. we re-
lease ALTRUIST2 as an open-source, customizable, distributed
testing tool for QoE assessment, along with a framework that
can be followed to extend its applicability.

II. MOTIVATION AND SYSTEM REQUIREMENTS

The engineering process for building ALTRUIST emerged
from the requirements of a QoE subjective study we previously
conducted, in the context of mobile cloud gaming (MCG)
[15]. We emulated several scenarios regarding users playing
a commercial game, streamed by a commercial service to a
smartphone under diverse network conditions. The following
requirements were set for successfully conducting the experi-
ment:

1) A variety of devices and platforms would be present in
the lab such as two Windows PCs, three Linux PC, and
an Android tablet.

2) A diversity of data logs would need to be collected
for each user test which includes questionnaire, game
activity, network packet capture, and streaming statistics.

1https://unity.com/
2https://github.com/hsr-research/ALTRUIST979-8-3503-1173-0/23/$31.00 ©2023 IEEE

The location where data was generated also varied across
their list device.

3) Cataloging the collected data by registering the test ID,
network degradation emulated, and date-time.

4) Performing a variety of tasks namely, keeping track
of the network conditions list (30 in total); executing
netem3 scripts and passing them the correct network
parameters; starting/stopping a game based on the match
status.

In addition, items 2,3, and 4 should be done for each user
test, following a systematic approach, to guarantee the same
experiment conditions each time. Our team concluded that per-
forming those tasks manually would be prone to human errors,
inconsistencies, delays and data loss. To fulfil our research
goals given the testing context, we developed ALTRUIST to
automatically manage and support our experiments.

III. ALTRUIST SYSTEM

To account for the variety of devices and tasks in the lab,
the ALTRUIST was designed to be portable and distributed. It
was built as a Unity game engine project and leverages Unity’s
capacity to deploy applications on multiple platforms. The
communication between each deployed application follows
a server/client architecture and is coded using the network
library Mirror 4. As such, two categories of applications were
developed within the system:

• Server: One application was developed to be the server,
and responsible to receive new client connections, syn-
chronising their global variables, receiving and broadcast-
ing their notifications, and executing the testing mode
(automatic or manual). We name this application the
ServerManager, and it has a UI that controls the test
and displays currently connected clients.

• Clients: Multiple applications were developed as clients
and deployed in a variety of devices to perform the nec-
essary test requirements. We named them Containers
since they hold a set of agents. The current list of
supported agents is presented in Table I. Agents perform
tasks such as: opening a process (e.g., a questionnaire
app, or game), and copy/delete a file (e.g., game stream-
ing logs, network traffic). QTnaireTask only defines the
tasks (e.g., open/close) given there are many question-
naire tool-kit [6]–[8] that can show a questionnaire UI
system in Unity. All the other agents provide both tasks
and full code to execute them.

The system’s applications can be deployed to multiple
supported Unity platforms (Windows, Linux, Android etc).
In the lab environment where the experiment of [15] was
conducted, the following platforms were chosen to deploy each
application of the system (see Fig. 1): PC1 and PC4 (Windows
10) hosted the ServerManager and Game-Streaming tasks;
PC2 and PC3 (Ubuntu) hosted the Network-Emulation and
Game-Server tasks respectively; an Android tablet (TB) hosted

3https://wiki.linuxfoundation.org/networking/netem
4https://mirror-networking.com/

Fig. 1: Describes the use case ALTRUIST was tested. Each
Container app communicates with ServerManager via TCP.

TABLE I: ALTRUIST’s system agents and their tasks.
Agent Name Task Agent Name Task

Wireshark Start/Stop Wireshark
network traffic capture. NetEmulator Applies network conditions

using Netem.

Ping Send ICMP packets and
tracks RTT, PL, or Jitter. PortWatcher Watches or send UPD/TCP

port messages.

FileTask Copy, delete or rename
files in the system. WinResources Tracks GPU,CPU,

RAM of a proccess.

ProcessTask Starts an application
or kills a process. RconWatcher

Reads/Sends Message
to apps that supports RCON5.

QTnaireTask Open/Close/Save
Questionnaire answers.

the Questionnaire tasks. A computer can host one or many
clients’ Container apps. However, only one ServerManger
must exist in the network.

Creating new Containers, or updating existing ones is per-
formed by editing a json file which defines a single Container
along with its list of agents and their settings. There are no
limit to the number of agents a Container can execute. Once
defined, the json file must be placed in ALTRUIST app folder
for the clients that will use the Container. Starting the system
as a client and loading a particular Container is done by
passing arguments to ALTRUIST.exe “-t ContainerName” or
as the server using “-t ServerManager”. This process can be
done without compiling the project from Unity editor.

Triggering the agents to perform their tasks, requires calling
a single function via C# code: SendAction-ConnectedDevices(
ActionName, ContainerName, AgentName). This code can be
called by a button from Unity canvas system. In this way,
many agents can simultaneously start/stop their tasks with the
press of a button. There are many examples of these use cases
contained within the project and documentation.

When a client Container starts, its behaviour is to activate
a local network discovery script, in an attempt to find a
suitable server to connect automatically. This communication
is done following the UDP protocol. Once a server is found a
connection is established and TCP protocol is used for sending
messages between server and clients. Those messages can be
server actions to clients or notifications of events sent from

5https://developer.valvesoftware.com/wiki/Source RCON Protocol

(a) ServerManager App.

(b) Client Container App.

Fig. 2: System’s default applications.

clients to a server. It is also possible to establish a remote
connection provided the ServerManager machine IP address
can be reached, and network port 7777 are unblocked. To do
so ALTRUIST clients should start with the special argument
“-c True”.

All the system’s applications have an UI that displays infor-
mative settings to be changed on-the-fly. The ServerManager
UI Fig. 2a shows all the connected devices, while clients UI
shows a list of the agents loaded to perform tasks Fig. 2b.
For the apps that have the UI on, it is possible to show the
system’s console messages on screen via a free Unity plugin.

IV. PERFORMANCE IMPACT

We assessed the performance of the ServerManger app by
collecting resource consumption of the application process
executing in a Windows 10 computer. The hosting computer
was equipped with an Intel i7-8700 CPU, a RTX 2070 GPU,
and 32 GB of RAM. The results are reported in Table II, and
indicates, in its basic form, ALTRUIST is lightweight with
low overall consumption, and it could fit well in even lower
computer specs.

TABLE II: ServerManager app’s resource consumption report
after executing in a Windows PC, 30 times for 90s each.

Application CPU (%)
Min/Max/Avg

GPU (%)
Min/Max/Avg

RAM (MB)
Min/Max/Avg

Server App. 0.18//6.37//2.43 1.18//9.43//5.58 325//451//385

V. DISCUSSION

QoE subjective tests commonly involve asking users to rate
their opinion about using a system or service. It will most
likely require showing a stimulus (e.g., a video game), and
asking after-test questions. In its current form, ALTRUIST can
manage those basic tasks presented in Table I out-of-the-box.
Thanks to Unity multiple-platform support, the system can be

Fig. 3: System overall code’s architecture. New agents should
inherit from abstract class TaskAgent.

deployed to the most common platforms in the market. Since
ALTRUIST follows a client/server architecture, it can be used
either in local (e.g. controlled lab environment) or remote (e.g.
crowd-source) experiments.

In case there is a need to extend the functionalities of
the agents or create new ones, the coding process follows
an object-oriented approach where each agent was written
as a single C# class Unity script, inherited from a base
abstract class that holds common functionalities for a group
of agents. The class diagram in Fig. 3 shows the overall
hierarchy using the two benchmark agents Ping and Wireshark
as examples. Since they both perform a measurement task,
the abstract class Benchmark-Task was created and defines
common functionalities for measurement agents. The system
is distributed as a Unity package, following the approach of
[6], along with its source code. This allows easy integration
with other Unity tools packages such as [4], [6]–[14], [16] .

Extending ALTRUIST demands creating or modifying a
Unity project, and recompiling it. We acknowledge this as a
limitation and to address it, our team is currently working on
an upgrade that will provide support for coding-on-the-fly6,
following a game modding approach. For improving the UI,
ALTRUIST could use a modular design that reads the UI basic
structure from a file. Lastly, testing all the agents in different
Unity platforms is also included in our checklist.

VI. CONCLUSION AND FUTURE WORK

In the context of tools for conducting QoE experiments, we
propose, develop and validate ALTRUIST, a lightweight multi-
platform distributed system, that can automatically perform
common tasks required to successfully conduct an experiment,
and collect and catalogue the data. Its code is open source
and can be used to modify existing or include new features.
We foresee ALTRUIST could become very robust through
the usage and inclusion of new features by the multimedia
community.

In the future, we plan to add more agents to the system,
support new ways to insert code and modify the UI without
the need to compile the project.

6https://github.com/dotnet/roslyn

REFERENCES

[1] S. Göring, R. R. Ramachandra Rao, S. Fremerey, and A. Raake, “AVrate
Voyager: an open source online testing platform,” in 2021 IEEE 23rd
International Workshop on Multimedia Signal Processing (MMSP), Oct.
2021, pp. 1–6, iSSN: 2473-3628.

[2] C. Keimel, J. Habigt, C. Horch, and K. Diepold, “QualityCrowd — A
framework for crowd-based quality evaluation,” in 2012 Picture Coding
Symposium, May 2012, pp. 245–248.

[3] P. Pérez and J. Escobar, “MIRO360: A Tool for Subjective Assessment of
360 Degree Video for ITU-T P.360-VR,” in 2019 Eleventh International
Conference on Quality of Multimedia Experience (QoMEX), Jun. 2019,
pp. 1–3, iSSN: 2472-7814.

[4] C. Cortés, P. Pérez, and N. Garcı́a, “Unity3D-based app for 360VR
subjective quality assessment with customizable questionnaires,” in 2019
IEEE 9th International Conference on Consumer Electronics (ICCE-
Berlin), Sep. 2019, pp. 281–282, iSSN: 2166-6822.

[5] D. Guse, H. R. Orefice, G. Reimers, and O. Hohlfeld, “TheFragebo-
gen: A Web Browser-based Questionnaire Framework for Scientific
Research,” in 2019 Eleventh International Conference on Quality of
Multimedia Experience (QoMEX), Jun. 2019, pp. 1–3, iSSN: 2472-7814.

[6] G. Regal, R. Schatz, J. Schrammel, and S. Suette, “VRate: A Unity3D
Asset for integrating Subjective Assessment Questionnaires in Virtual
Environments,” in 2018 Tenth International Conference on Quality of
Multimedia Experience (QoMEX), May 2018, pp. 1–3, iSSN: 2472-7814.

[7] M. Feick, N. Kleer, A. Tang, and A. Krüger, “The Virtual Reality
Questionnaire Toolkit,” in Adjunct Publication of the 33rd Annual ACM
Symposium on User Interface Software and Technology. Virtual Event
USA: ACM, Oct. 2020, pp. 68–69.

[8] R. Tamaki and T. Nakajima, “Shoot Down Drones with Your Answer,
an Integration of a Questionnaire into a VR Experience,” in Symposium
on Spatial User Interaction. Virtual Event USA: ACM, Nov. 2021, pp.
1–2.

[9] R. Bovo, D. Giunchi, A. Steed, and T. Heinis, “MR-RIEW: An MR
Toolkit for Designing Remote Immersive Experiment Workflows,” in

2022 IEEE Conference on Virtual Reality and 3D User Interfaces
Abstracts and Workshops (VRW). Christchurch, New Zealand: IEEE,
Mar. 2022, pp. 766–767.

[10] M. R. Watson, B. Voloh, C. Thomas, A. Hasan, and T. Womelsdorf,
“USE: An integrative suite for temporally-precise psychophysical ex-
periments in virtual environments for human, nonhuman, and artificially
intelligent agents,” Journal of Neuroscience Methods, vol. 326, p.
108374, Oct. 2019.

[11] A. O. Bebko and N. F. Troje, “bmlTUX: Design and Control of
Experiments in Virtual Reality and Beyond,” i-Perception, vol. 11, no. 4,
p. 2041669520938400, Jul. 2020, publisher: SAGE Publications.

[12] J. Brookes, M. Warburton, M. Alghadier, M. Mon-Williams, and
F. Mushtaq, “Studying human behavior with virtual reality: The Unity
Experiment Framework,” Behavior Research Methods, vol. 52, no. 2,
pp. 455–463, Apr. 2020.

[13] A. Steed, L. Izzouzi, K. Brandstätter, S. Friston, B. Congdon, O. Olkko-
nen, D. Giunchi, N. Numan, and D. Swapp, “Ubiq-exp: A toolkit to build
and run remote and distributed mixed reality experiments,” Frontiers in
Virtual Reality, vol. 3, p. 912078, Oct. 2022.

[14] J. Lee, R. Natarrajan, S. S. Rodriguez, P. Panda, and E. Ofek, “Remote-
Lab: A VR Remote Study Toolkit,” in The 35th Annual ACM Symposium
on User Interface Software and Technology. Bend OR USA: ACM,
Oct. 2022, pp. 1–9.

[15] H. S. Rossi, N. Ögren, K. Mitra, I. Cotanis, C. Åhlund, and P. Johansson,
“Subjective Quality of Experience Assessment in Mobile Cloud Games,”
in GLOBECOM 2022 - 2022 IEEE Global Communications Conference,
Dec. 2022, pp. 1918–1923.

[16] S. J. Friston, B. J. Congdon, D. Swapp, L. Izzouzi, K. Brandstätter,
D. Archer, O. Olkkonen, F. J. Thiel, and A. Steed, “Ubiq: A System
to Build Flexible Social Virtual Reality Experiences,” in Proceedings of
the 27th ACM Symposium on Virtual Reality Software and Technology.
Osaka Japan: ACM, Dec. 2021, pp. 1–11.

