
Objective QoE Models for Cloud-based First Person
Shooter Game over Mobile Networks
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Abstract—Mobile cloud gaming (MCG) lets users play cloud
games (CG) on mobile devices anywhere via mobile networks.
However, the stochastic nature of network quality of service
(QoS) can result in varying user quality of experience (QoE).
Understanding, modeling, and predicting the impact of mobile
networks’ QoS on users’ QoE is crucial. This helps stakeholders
optimize networks, and game developers efficiently create cloud-
hosted games provisioned over mobile networks. This paper
investigates the impact of QoS on users’ QoE and proposes,
develops and validates novel models for predicting QoE for
MCG in mobile networks using realistic subjective tests. In
particular, we propose and develop three QoE models using
multiple, polynomial, and non-linear regression. Our results
validate that multiple regression (with R2=0.79, RMSE=0.45) can
model complex relationships between QoS factors that impact
QoE. Multiple polynomial regression achieved the overall fit with
(R2=0.94, RMSE=0.24). Lastly, the non-linear model achieved a
good RMSE of 0.24. To select the best model out of the three,
we applied the F-test and determined that polynomial regression
had the best statistical fit.

Index Terms—Subjective tests, Modeling, Prediction, Quality
of Experience, Quality of Service, Mobile Cloud Gaming

I. INTRODUCTION

The game industry is shifting towards cloud computing,
enabling users worldwide to play games anywhere and any-
time, using a game-as-a-service (GaaS) model. As a result, a
large catalog of games can be played on users’ smartphones
connected via mobile networks in public spaces, or while
moving within a city. Mobility can result in heavy workloads
on users’ access points, resulting in traffic congestion and
handoffs and leading to worse QoS metrics, including high
RTT [1], RJ [1], infrequent bursty jitter (BJ) [2], [3], PL
[1]–[3], and co-occurrence of RTT and PL [2]. Mobile cloud
gaming (MCG) is a critical service to provide over mobile
networks, and ensuring a good gaming experience or QoE
requires stakeholders to learn how QoS metrics affect MCG
so that they can optimize their infrastructure.

Objective QoE models for MCG are vital to predict user
QoE [4] and provide the means for stakeholders to adapt to
underlying QoS conditions in real time. Most of the work has
focused on PC-CG [5]–[10]. However, due to hardware and
input constraints, PC-CG does not cover factors related to the
mobile field. Factors such as screen size [7], and input [11]
have been linked to differences in how users perceive quality.
On the contrary, MCG requires users to hold the device and

look down on smaller screens while playing with different
inputs, such as a touchscreen or a gamepad. For that, current
research in MCG models [12], [13] is lacking, as they do not
consider jitter and the combined effect of delay and packet
loss, which are all common in real mobile networks.

This paper fills these gaps by focusing on the network side
of MCG and studying an extensive set of QoS factors and
ranges with the aim of answering the fundamental question:
”How can we model and predict users’ QoE for MCG influ-
enced by a variety of realistic mobile network conditions ?”
To address this question, this paper proposes, develops, and
validates three novel QoE models for MCG provisioned over
mobile networks. Major contributions are as follows:

• Perform modeling and prediction of QoE considering
burst jitter (BJ), random jitter (RJ), and the combined
effect of PL and RTT which were not yet explored by
the state-of-the-art research in the context of MCG;

• develop novel statistical QoE models for MCG based on
multiple linear, polynomial and nonlinear regression and
determine models that are best based on F-tests;

• publicly release QoE dataset1 for the research community,
which was used to train our models.

II. TESTBED AND DATASET

In a laboratory environment, we conducted subjective tests
following the guidelines of [8], [11], [13]. Users (n=31) were
invited to play CS:GO matches (n=26) streamed via Steam
HomePlay on a smartphone under various network conditions
(see Table I). These values were based on [10]–[12] and
by conducting drive-through tests in the city of Skellefteå,
Sweden, for a period of several days. For each subjective test,
the QoS parameters were varied using NetEM (controlled by
the ATRUIST tool [14]) which sits between the smartphone
and the game streaming servers. Based on users’ ratings (likert
like scale 1-5 where 1 = ”poor” and 5 = ”excellent”), for each
match, we computed the mean opinion score (MOS) as the
average of the scores. For the sake of brevity, we refer the
careful reader to Rossi et al. [15] for further details regarding
the lab setup and subjective tests. The next section focuses on
building novel QoE models for MCG.

1https://github.com/hsr-research/MCG-CSGO-dataset



TABLE I: The conditions used for subjective tests [15].

Parameter N. Conditions Values
RTT 7 2,25,50,100,200,300,400 ms
PL 3 5%,25%,45% at RTT=2ms

(RTT,PL) 9 PL(0.2,1,5) %; RTT(25,50,100) ms
BJ 3 Jitter(50,200,1500) ms; Interval 15s
RJ 4 µ=50ms; Std(3,6,9,12)

Total 27 Final Count = 27

III. QOE MODELS FOR MOBILE CLOUD GAMES

For QoE modeling, we consider both linear and non-linear
approaches to determine models that perform better but are
lower in complexity (by performing F-tests), as these models
should be used by stakeholders in real life in their products.

QoE = f0 + f1 ·RTT + f2 · PL+ f3 ·RJ + f4 ·BJ

+ f5 ·RTT · PL (1)

Linear Models: Our first model is described in Eq. 1, named
Linear Reg., is a multiple regression equation composed of
single terms for each independent variable to model their
relationship with QoE, along with an interaction between RTT
and PL. All terms are statistically significant (p < 0.05),
highlighting the importance of each tested network condition
variable in the MCG modeling, including combined conditions
(RTT, PL). This model is the most simple and should serve to
verify the feasibility of modeling MCG using first-order only
terms, similar to the work of [9]. Linear Reg. model was not
enough to account for some of the conditions total variance
(e.g., (RTT,PL) and RJ). Hence, we investigated interactions
between model terms in pairs (e.g. RTT*RJ, PL*BJ) and
triples (e.g. RTT*BJ*PL), following a brute-force approach.
The term RTT * PL was the only combination that produced
a valid coefficient. Thus, for our dataset, RTT and PL have
dependency, while RJ and BJ are independent. Further, we
identified that RJ and BJ terms are important terms, as their
absence from the equation produces very low accuracy scores.

QoE = g0 + g1 ·RTT + g2 · PL+ g3 ·RJ + g4 ·BJ

+ g5 ·RTT 2 + g6 ·RTT 2 · PL+ g7 ·RTT · PL2

+ g8 ·RTT 2 · PL2 (2)

Based on Eq. 1 we then investigated higher orders (i.e.
second and third) for each term. As a result, we propose a
second model (Eq. 2), named Poly. Reg, a multiple polynomial
regression. It contains single terms for each network parameter
as first order and the interaction between RTT and PL com-
bined in different forms using both first and second degrees.
To increase the explainability of the model, we considered the
coefficient’s p-value, the metrics R2, and adjusted R2, visu-
ally inspecting the distribution of residuals, and the model’s
complexity. To increase its accuracy, additional higher-order
polynomial terms were necessary to account for all the RTT
and PL conditions and their combined interaction. They were
the majority of our dataset (that is, 19 out of 26 conditions).
Both RTT · PL2, RTT 2 · PL, and RTT 2 · PL2 support the

PL conditions tested individually and together with RTT. All
terms, except RTT 2, are statistically significant, suggesting
that the combined conditions (RTT,PL) caused a different
behavior in the network for MCG in addition to the RTT and
PL conditions tested separately. We decided to keep RTT 2

since it helped to account for the slight nonlinear shape of the
individual RTT conditions.

QoE = MaxQoE − IRP (RTT, PacketLoss)

− IR(RandomJitter)− IB(BusrtyJitter) (3)

Non-linear Model: By learning about the most important
non-linear interactions in the MCG modeling, and following
the ITU modeling approach, we proposed a third model
named Non-lin. Reg., described in Eq. 3. It is composed
of three individual functions presented in Eq. 4. Inspired by
[8], we define the constant term MaxQoE equal to the best
MOS possible that can be obtained during subjective tests.
In our case, it was condition C0 (e.g. no degradation). The
advantage of this approach is that if we preclude the terms
from predicting MOS, for example, if RJ is 0, we can still
predict the MOS as these factors are negatively additive.

IRP = h1 · (RTT ·PL)h2 +h3 ·PL2+h4 ·PL+h5 ·RTT

IR = h6 +
(h7 − h6)

1 + e(
RJ−h8

h9
)

IB = h10 ·BJh11 (4)

The first individual function (Eq. 4) IRP , models RTT
and PL and is a combination of first and second degree
polynomials adjunct to a power function for the interaction
term. We chose a power function, since it has the freedom
of defining the curve shape from the exponent coefficient h2,
proving suitable to model the combined (PL,RTT) conditions.
We also attempt to model this (RTT,PL) interaction in the
same way as proposed in Linear Reg, but did not achieve a
reasonable residual distribution and a lower R2 value. The
second individual function IR, is a standard S-shaped logistic
growth function composed of 4 coefficients to model RJ
and matches its curve shape. Different S-shapes functions
were also considered (e.g. Weibull, Gompertz equations) but
producing very similar results or worse. The last function IB ,
proposed for BJ cases is a power function with two coefficients
necessary to control the curve’s shape. In the next section, we
present the statistical analyses for the three models.

IV. RESULTS ANALYSIS

The coefficients of the models are listed in Table II. Linear
Reg. and Non-lin. Reg. models were trained using the same
dataset that included 26 network conditions, while Poly. Reg.
with a reduced dataset (25 network conditions) since RJ = 6std
was removed (explanation in Section IV-B). The accuracy of
the models is reported in Table III, in terms of degrees of
freedom (DF) [16], root mean square error (RMSE), mean
absolute error (MAE), Pearson’s linear correlation (PLCC),
coefficient of determination R2 and adjusted R2. Differences



TABLE II: Models’ coefficients fitted values.
Model Coefficients

Linear Reg. f0=4.0033, f1=-0.0072, f2=-0.0438, f3=-0.1229, f4=-0.0011, and f5=-0.0043

Poly. Reg.
g0=4.0157, g1=-0.0091, g2=0.0596, g3=-0.1385, g4=-0.0012,
g5 = 1 · 10−5, g6=-0.0002, g7=−0.0015, g8 = 4 · 10−5

Non-Lin. Reg. h1=0.1404, h2=0.4746, h3=0.003, h4=−0.0936, h5=0.0074, MaxQoE=4
h6=−0.1492, h7=1.5913, h8=6.2635, h9=−0.1043,h10=0.0445, h11=0.5083

(a) (b)

(c) (d)

(e)

Fig. 1: Model’s prediction in vertical bars per condition.

between model prediction output and the true MOS value per
condition can be visualized in Fig. 1. The residual analyzes
were performed by visually inspecting their distribution in the
histogram and the normal probability plots in Fig. 2.

(a) Linear Reg. (b) Linear Reg

(c) Poly. Reg. (d) Poly Reg.

(e) Non-lin. Reg. (f) Non-lin. Reg.

Fig. 2: Residuals in histogram and normal probability plot.

A. Linear Regression Model

The first mode, Linear Reg. (Eq. 1), has the lowest accu-
racy compared to other models (see Table III); however, it
still proves to be capable of producing a fairly good model
explainability (with almost 80% R2 value) for most cases.
This result is surprising, since this model contains only single-
order terms and one interaction. The residual plot in Fig. 2a
resembles a normal distribution, and the normal probability
graph in 2b follows a straight line, clearly showing a good fit of
the model. When it comes to the residual sizes (in Fig. 1), the
most significant residuals belong to the following conditions:

• Condition (RTT=102ms,PL=1%) with rsid = -1 and
(RTT=102ms,PL=0.2%) with rsid = -0.75 (in Fig. 1e).

• Condition (PL=24%) with rsid = 0.97 (in Fig. 1b).
• Condition (RJ=6std) with rsid = 0.75 (in Fig. 1c).
These results were expected and show that Linear Reg. did

not model the non-linearity of combined PL and RTT very
well. However, for most of the conditions (n=22) the residual
(rsid) =< |0.55| which is reasonably good.

B. Polynomial Regression Model

Poly. Reg. model’s (Eq. 2 has the smaller RMSE and MAE
along with Non-Lin. Reg. (see Table III). The model showed
good performance with fewer coefficients compared to Non-
Lin. Reg. However, Poly. Reg. was trained with a reduced
version of our dataset, motivated from our initial analyses. At
first, we identified an outlier in the normal probability plot for
the condition RJ = 6std with a considerable deviation from the
line. Since in the RJ tests (see Fig. 1c), condition RJ = 6std
(MOS = 3.82) had a score similar to condition RJ = 3std (MOS
= 3.87), we decided to remove RJ= 6std without compromising
the dataset and the modeling of the RJ variable significantly.
After this change, we had a better fit of the model with R2 of
0.94% (it was 0.91% before outlier management). Afterwards,
the residual histogram for Poly. Reg. (Fig. 2c) and the normal
probability plot (Fig. 2d) were reasonably well distributed.

Regarding the size of the residuals, the most significant was
in (RTT=52ms,PL=5%) with rsid=-0.6, which represents the
combined (RTT,PL) conditions; this residual is not as large as
Linear Reg., but still demonstrates that the polynomials were
not able to fully account for all the RTT and PL conditions,
which is expected. The remaining conditions had rsid < |0.51|.
Still Figs. 1e and 1c show that Poly. Reg. performs better than
Linear Reg. in cases where PL and RTT have interaction, and
regarding jitter conditions.

C. Non-linear Regression Model

Our Non-Lin. Reg. model provided the highest accuracy
(see Table III), with slightly better MAE compared to Poly.
Reg. In Figs. 2e and 2f, the residual and normal probability
plots are depicted, suggesting that the residuals are normally
distributed. As Non-Lin. Reg. provided the best fit, we ob-
served minimal residual values below |0.5|, the lowest among
the proposed models. The largest residual was for the condition
(RTT = 27 ms, PL = 5%) and (RTT = 52 ms, PL = 5%)
with rsid = 0.49, which belong to the combined conditions



TABLE III: Models’ performance from various metrics.

Model DF RMSE MAE PLCC R2 R2-Adj
Linear Reg. 20 0.45 0.35 0.89 0.79 0.73
Poly. Reg. 17 0.24 0.19 0.97 0.94 0.9

Non-Lin. Reg. 15 0.24 0.18 0.97 * 2. *

TABLE IV: F-Test to assess pair-wise models comparison.
Test ID Model SSR F Statistics P >|T| DF Hypothesis

1 Poly. Reg. 1,495 – – 17 –
1 Non-Lin. Reg. 1,480 0,14931 0,70462 15 Reject Non-Lin. Reg.
2 Linear Reg. 5,199 – – 20 –
2 Non-Lin. Reg. 1,480 753,954 0,00102 15 Reject Linear Reg.
3 Linear Reg. 5,199 – – 20 –
3 Poly. Reg. 1,495 9.91422 0,00031 17 Reject Linear Reg.

(RTT, PL), see (Fig. 1e). Regarding the RJ conditions (in
Fig. 1c), Non-Lin. Reg. could nearly match their true value.
The modeling of RJ as an S-shaped function (Eq. 3) proved
to be the best technique rather than first or second degree
polynomials. Therefore, the results of our experiment suggest
that the Linear Reg. could not account well for all the RJ and
combined conditions (RTT,PL), while Poly. Reg and Non-Lin.
Reg. resulted in better fits.

D. Best Model Selection

Since Poly. Reg. and Non-lin. Reg. models have very similar
accuracy, although Poly. Reg. slightly worse regarding MAE
but with far fewer terms, it becomes hard to decide which
one has a better fit. To answer this question, we performed a
pairwise F-test [16]. This test considers the trade-off between
the models’ complexity in degrees of freedom (DF) and the
models’ prediction performance based on the sum of squared
residuals (SSR). The models are tested in pairs (identified by
the test ID), and the null hypothesis states that each pair’s
second row has the best statistical fit (see Table IV).

From the hypothesis column, it can be seen that Poly.
Reg. has the best fit, followed by Non-Lin. Reg. and Linear
Reg. Non-Linear Reg. and Linear Reg. were rejected when
compared with Poly. Reg. This means that although Non-Lin.
Reg. has a better prediction accuracy, Poly. Reg. is statistically
better due to its lower number of terms. In contrast, between
Linear Reg. and Non-Lin Reg., the non-linear model had a
statistically better fit. Therefore, we conclude that the model
Poly. Reg. is the best model for MCG.

V. CONCLUSION

This paper proposes three different models to predict QoE
for MCG, for static and mobility aspects never considered
before; and for the first time, we release the dataset used
in model training. Further, we found that 1) Surprisingly,
simple multiple linear regression can model and predict dif-
ferent network behaviors for MCG fairly well R2 = 0.79.
However, polynomial regression and non-linear (NL) models
offer highest accuracy with R2 = 0.94 and RMSE of 0.24,
respectively; 2) The network conditions for RJ were better
modeled using NL functions rather than linear/polynomial

2R2 and R2-Adj was not calculated for NL models since [17]

regression; 3) Individual and combined (RTT, PL) conditions
were difficult to model, as their combination caused a different
MOS degradation pattern than their individual tests. Future
studies are advised to consider both cases; 4) Our extended
polynomial regression model proved to be statistically the best
fit.
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