
QoE Models for Virtual Reality Cloud-based First
Person Shooter Game over Mobile Networks

Henrique Souza Rossi∗, Karan Mitra∗, Christer Åhlund∗, Irina Cotanis†
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Abstract—Virtual reality cloud-based gaming (VRCG) services
are becoming widely available on virtual reality (VR) devices de-
livered over computer networks. VRCG brings users worldwide
an extensive catalog of games to play anywhere and anytime.
Delivering these gaming services in existing broadband mobile
networks is challenging due to their stochastic nature and the
user’s perceived Quality of Experience (QoE)’ sensitivity towards
them. More research is needed regarding developing effective
methods to measure the impact of network QoS factors on
users’ QoE in the VRCG context. Therefore, this paper proposes,
develops, and validates three novel regression models trained on
a real dataset collected via subjective tests (N=30); the dataset
contains subjective users’ QoE ratings regarding VR shooter
games affected by network conditions (N=28), such as round-
trip time (RTT), random jitter (RJ), and packet loss (PL). Our
findings reveal that due to the nonlinear relationship of (RTT and
RJ) tested together, nonlinear (mean absolute error (MAE)=0.14)
and polynomial (MAE=0.15) regression models have the best
performance; yet, simple linear regression model (MAE=0.19) is
also suitable to predict QoE for VRCG. Further, we found that
feature importance depends on the model’s choice (either RTT
or RJ). Finally, our models’ prediction of QoE for real-world
traffic measurements suggests that mobile network traffic (4G,
5G non-standalone, 5G standalone) provides a 2.5 ≤ MOSQoE ≤
3.0 experience for VRCG, while 4.2 ≤ MOSQoE ≤ 4.4 for wired
connections, suggesting the need for improvements in the current
commercial 5G network deployments to deliver VRCG.

Index Terms—Subjective tests, Quality of Experience, Virtual
Reality, Modeling, Prediction, Games.

I. INTRODUCTION

Metaverse goals are set to bring new applications and
services to enhance the way humans entertain, socialize, and
interact with the virtual world [1]. As an example, the recent
move of the 18 billion US$ worth cloud gaming industry to
VR1, provides users worldwide with new forms of playing
an extensive catalog of games, on the most immersive and
interactive VR devices anywhere and anytime. This new type
of service relies on stringent network conditions, as both cloud
gaming (CG) and VR gaming are highly sensitive to latency
[2], PL, and jitter. As a result, there is a need to develop
new metrics to estimate users’ QoE, considering factors re-
garding networks, VR devices, and game content. QoE is a
multidimensional metric that measures users’ likes and dislikes
towards a particular technology, application, or service [3].
Therefore, QoE metrics can assist stakeholders in realistically

1https://www.theverge.com/2023/12/13/24000134/xbox-cloud-gaming-
meta-quest-3-vr-headset [online: accessed June 2024]

understanding the customer base and improving their services
and applications regarding VRCG content, accordingly.

VRCG QoE evaluation is complex. Recently, a few studies
aim to address it by assessing the effect of (albeit with
limited ranges of) RTT and PL on users’ QoE [4]–[6]. More
importantly, no models have yet been proposed and validated
to predict QoE for VRCG. We assert that there is a need to
develop accurate QoE models for VRCG services that account
for the heterogeneous nature of mobile broadband networks
such as 4G and 5G that are prone to QoS impairments such
as PL, RTT, and jitter that negatively affect users’ QoE [7],
[8]. Therefore, to fill this research gap, this paper focuses on
the network side of VRCG context and considers 28 mobile
network conditions for RTT, PL, combined (RTT,PL) and
combined (RTT,RJ) to assess their impact on (N=30) users
QoE for the first-person shooter (FPS) game, Serious Sam
VR. This paper aims to answer the following question: “How
can we model and predict users’ QoE for VRCG influenced
by various realistic mobile network conditions ?”

Contributions: i. To the best of our knowledge, this is the
first paper to propose, develop, and validate QoE models for
VRCG based on a wide range of network conditions covering
4G and 5G. In particular, this paper proposes and develops
three novel regression QoE models for VRCG; ii. we carefully
assess the importance of the models’ features regarding RTT,
PL, and their interactions (RTT,PL), (RTT,RJ), never studied
before in the context of VR gaming and VRCG; and iii. from
real-world network traffic measurements, we assess whether
VRCG can be supported on current networks.

II. TESTBED AND DATASET

To study the effect of network conditions on users’ per-
ceived QoE, we conducted subjective tests in a lab environ-
ment based on the guidelines of [9]–[12]. In total, 30 users
were invited to play Serious Sam VR: The Last Hope2. By
choosing an FPS game, a genre that entails high precision
and fast response from users [13], we assume to cover such
application factors, which may or may not be available in
conjunction for other immersive VR interactive content. We
used Nvidia CloudXR3 for game streaming.

2https://store.steampowered.com/app/465240 [Online: accessed June 2024]
3https://developer.nvidia.com/cloudxr-sdk [Online: accessed June 2024]



TABLE I: Network conditions emulated using NetEM.
QoS Factor N. of Conditions Values

RTT (ms) 8 4,27,52,77,177,277,352,402 in ms
PL (%) and RTT=4ms 3 6,12,24 in %
RTT (ms) and PL (%) 8 [27ms;2,4,6], [52ms;2,4,6], [77ms;2,4,*]
RTT (ms) and RJ (std) 9 [27ms;1,3,6], [52ms;1,3,6], [77ms;1,3,6]

Total 28**

*PL=6% forces service crash in CloudXR. Thus not included in the tests
**Setup baseline RTT=2ms included for all conditions

In the lab, a total of 28 emulated network conditions (see
Table I), using NetEM controlled by ALTRUIST [14], were
applied to both up/down links (RTT values were halved for
each link). The range of values for each condition were defined
following the iterature [4]–[6] for RTT and PL. Regarding the
combined (RTT,PL) and (RTT,RJ)4 we considered ranges from
mobile network studies [11], [15]–[17]. Subjective tests had a
total duration of 1 hour and 30 minutes, since we followed a
within-subjective design (each user, played all 28 conditions,
randomized). After each played match, participants were asked
to rate their QoE on a Likert-like scale of 1 to 5 (where 1 =
“very poor” and 5 = “very good”). Each match had a duration
of 90 seconds, as suggested by ITU-T Rec. P809 [18], for
game tests. From the collected data, we computed the mean
opinion score (MOS) as the average of the user ratings for
each condition to build a training dataset. More details on
data collection, analyses, and the effect of network conditions
on QoE and CloudXR metrics can be found in Rossi et al.
[19]. In the next section, we present QoE models for VRCG.

III. QOE MODELS FOR VRCG

Our modeling process considered a broad range of linear
and nonlinear regression functions, ensuring the ability to
model complex nonlinear interactions in various ways. As
a result, we propose the following three regression models.
Please refer to the table II for models’ fitted coffiecients.

Linear Models: Described in Eq. 1 named Lin.Reg., is a
multiple linear regression equation composed of each inde-
pendent variable as single terms. All terms are statistically
significant (p < 0.05), which emphasizes the importance of
each tested network condition for VRCG. Next, after investi-
gating the interactions among all three features, we learned that
only RTT·RJ produces a statistically significant coefficient.

x = l0 + l1 · RTT + l2 · PL + l3 · RJ (1)

Moreover, we examined both individual terms and their
interactions in various forms, including linear, quadratic, and
cubic. The only combination deemed meaningful in terms of
coefficients’ p-value, the residual distribution, and the accuracy
of the prediction is described in Eq. 2 refereed as Poly.Reg..
The coefficients associated with this model are statistically
significant (p < 0.05) and highlight the nonlinear impact of
RTT·RJ on QoE for VRCG, while RTT, PL and combined
(RTT, PL) conditions were best represented by a line.

x = p0+p1 ·RTT+p2 ·PL+p3 ·RTT 2 ·RJ+p4 ·RTT ·RJ2

+ p5 ·RTT ·RJ3, subjective to: (RTT, RJ) ≤ 77ms, 6std (2)

4Jitter values generated from a normal distribution.

NonLinear Model: Since higher order terms were necessary
to model the RTT·RJ interaction, the next natural step was
to explore the vast set of nonlinear functions, at the cost
of higher number of coefficients, which enables better curve
control [20]. Followed by ITU-T G1072 model structure [21],
we propose a third model in Eq. 3, named NonLin.Reg., which
is composed of three impairments Ir, Ip, Ij (see Eq. 3.1), each
to model a network feature impairment. The constant QoEMax

is the maximum MOSQoE encountered in our tests (similar
to [10]), reduced by each impairment function.

x = QoEMax − Ir − Ip − Ij (3)

Ir = n1 ·RTT , Ip = n2 · PL

Ij = n4 +
(n3 − n4)

1 + e(RJ−n5)
, where RTT ≥ 2ms and RJ ≥ 0 (3.1)

An attempt was made to apply nonlinear equations (e.g.
Gompertz, power, logistic, Gaussian, etc.) for each feature sep-
arately and combined. In the features of RTT,PL and (RTT,PL),
we noticed that the curve-fit converged coefficients most often
make nonlinear equations resemble lines, irrespective of the
equation, leading to wide or infinity coefficients’ confidence
intervals. Hence, we model RTT and PL as a simple line. In
contrast, the (RTT,RJ) conditions were best modeled by an
S-shaped logistic growth equation, which accounted for the
most variance of the RJ conditions while maintaining a narrow
coefficient’s confidence interval.

MOSQoE = max(1,min(x, 5)) (4)

Since regression models’ outputs can exceed our MOS range
[1,5], we use the function in Eq. 4 to ensure that the outputs
remain within [1,5] for untrained network conditions. Next,
we present the statistical analyses of the three models.

IV. RESULT ANALYSES

This section presents the results analysis of our novel
QoE models based on root mean squared error (RMSE),
mean absolute error (MAE), Pearson’s correlation (PLCC),
coefficient of determination (R2), and adjusted R2 values. The
models’ fitting coefficients are listed in Table II, while the
models’ performance scores are listed in Table III.

TABLE II: Models’ fitted coefficients.

Model Coefficients
Lin.Reg. l0=4.409098, l1=-0.006864, l2=-0.118618, l3=-0.255789

Poly.Reg.
p0=4.398909, p1=-0.006793, p2=-0.117927
p3=85 ·10−6, p4=-0.006595, p5=817 ·10−6

NonLin.Reg. QoEMax=4.4, n1=0.007003, n2=0.122350,
n3=-0.277909, n4=1.456521, n5=1.937740

A. Model Fitting and Performance Analyses:

In linear and nonlinear regression, model correctness and
validity assume that residuals are normally distributed [22].
Hence, an inspection of the three model’s residuals (in Fig.
1) shows that they (red dots) nearly stay on top of the
normal distribution line. Therefore, the models are correct and



produce a good fit.Additionally, due to inherent approximation
in nonlinear regression coefficients, we verify NonLin.Reg
certainty for the best fit line, by calculating the coefficients’
confidence interval.. For that, the F-test method considered
robust [20] was employed and the results are reported in Fig.
1d. The findings indicate that the intervals (α = 0.05) are
small and can be concluded NonLin.Reg. produced the best
fit, with a reasonable degree of certainty.

TABLE III: Models’ performance in various metrics.

Model RMSE Cross.V.
(RMSE) MAE Cross.V.

(MAE) PLCC R2 R2
Adj DF

Lin.Reg. 0.26 0.22 0.19 0.22 0.95 0.89 0.88 23
Poly.Reg. 0.19 0.22 0.15 0.22 0.97 0.94 0.93 21

NonLin.Reg. 0.22 0.20 0.16 0.20 0.96 – – 22

The prediction error for Poly.Reg. and NonLin.Reg. is simi-
lar for RMSE, MAE and PLCC, with slightly better scores for
Poly.Reg. (see Table III). This indicates that the higher-order
RTT·RJ terms for Poly.Reg. were comparable to NonLin.Reg.
RJ function. The largest residual for both models is resid=0.47
for the condition (RTT=77ms, PL=2%) in Fig. 2c, while all the
remaining conditions have the highest resid ≤ 0.4. In contrast,
Lin.Reg. has the highest score errors (see Table III), and the
conditions with the highest were resi=-0.52 for (RTT=52ms,
RJ=3std) and resid=0.51 for (RTT=77ms, RJ=1std) in Fig. 2d.
Hence, it highlights the nonlinearity of RJ conditions which
were modeled by Lin.Reg. as a line. Still Lin.Reg. achieved
almost 90% R2, and therefore shows that a simple linear
regression is still capable of predicting MOS for VRCG.

To verify the models’ performance on unseen data, Leave-
one-out Cross-Validation (LOOCV) was utilized which ex-
cluded each network condition one at a time from the training
set. LOOCV was chosen due to the small size of the dataset
(N=27), where some network condition cases (e.g. PL, N=3
conditions) have insufficient number of data-points to be split
in larger sets. As a consequence, applying other types of Cross-
validation splits, would result in biased results due to non-
representative data used in training or test sets. The results of
LOOCV in Cross.V.(RMSE) and Cross.V(MAE) metrics are
presented in Table III. Comparison of MAE vs. Cross.V(MAE)
for all models shows that a small prediction error increases
between 0.03 and 0.07 MOS5. Hence, we conclude the models
are robust, unbiased and they do not over-fit the dataset.

B. Feature Importance:

From the perspective of stakeholders, better service quality
involves increased investments in new hardware and soft-
ware to accommodate stringent requirements. Hence, they
can benefit from feature importance analyses to guide their
investment toward supporting VRCG QoS. To do this, we
apply the Shapley method [23], which computes the average
marginal contribution of each feature (RTT, RJ, and PL) and
their studied ranges per model. The results detailed in Fig.
3, indicate that feature importance is model dependent. The
most important features are RJ (for Poly.Reg) and RTT for

5MOS varies between 1 - 5 in the dataset.

(a) (b)

(c) (d)

Fig. 1: Normal probability plot for (a) Lin.Reg., (b) Poly.Reg.,
(c) NonLin.Reg; Confidence interval for NonLin.Reg (d).

(a) (b)

(c) (d)

Fig. 2: Model’s prediction MOSQoE results as bars for the
tested condition, against the True value.

NonLin.Reg and Lin.Reg. Therefore, we recommend allocat-
ing new investments to reduce jitter and or RTT for VRCG
services according to the model choice.

C. Best Fit for VRCG:

The three models are statistically correct, they derive a good
fit for the dataset, with low prediction error. However, their
performance differs depending on the number of coefficients
and degrees of freedom (DF). Hence, it is challenging to
decide, solely on their performance, which model is the best
suited for VRCG. Therefore, we follow the method suggested

(a) (b) (c)

Fig. 3: Shap feature importance evaluation for (a) Lin.Reg.,
(b) Poly.Reg., (c) NonLin.Reg.



by [24], which entails employing a pairwise F-test, utilizing
the residual sums of squares (SSR) and DF of the models,
to ascertain the optimal statistical fit among them. Table IV
presents the outcomes of the pairwise tests, each marked with
a distinct test ID. It shows Poly.Reg. has a statically better fit
than NonLin.Reg and Lin.Reg., thereby establishing it as the
most appropriate model for our VRCG dataset.

TABLE IV: F-Test to compare model’s fit performance.

Test ID Model SSR F Value P>|T| DF Hypothesis
0 NonLin.Reg. 1.26 – – 22 –
0 Poly.Reg. 0.98 6.102 0.022 21 Reject NonLin.Reg.
1 Lin.Reg. 1.82 – – 23 –
1 Poly.Reg. 0.98 9.079 0.001 21 Reject Lin.Reg.
2 Lin.Reg. 1.82 – – 23 –
2 NonLin.Reg. 1.26 9.787 0.005 22 Reject Lin.Reg.

D. Assessment of VRCG in Real Networks:

Another important aspect related to existing commercially
available broadband mobile networks is to asscess whether
they can deliver sufficient QoE for VRCG. Therefore, we
collected actual network traffic over seven days by sending
ICMP packets every second from the city of Skellefteå in
northern Sweden to five Amazon Services (AWS) data centers
within Europe using three mobile network operators. This
was done using four different network standards i.e., wired,
4G, 5G-NSA, 5G-SA. Subsequently, we computed the average
RTT (Fig. 4a) and average Jitter (Fig. 4b) as input to the best
statistically fit Poly.Reg model. The results, in Fig. 4c, reveal
that the predicted QoE lies between 2.5 and 3.0 for all mobile
networks tested, while the latest 5G-SA performs slightly
better. The exception is for wired connections, where the MOS
ranges from 4.2 to 4.4. Considering the subjective quality scale
derived from the QoE question, the quality of the VRCG
performance should be between “Excellent” and “Good” (5
and 4 respectively) in wired connection, while “Average” and
“Poor” (3 and 2 respectively) for mobile networks. Therefore,
it is imperative for stakeholders to allocate resources and
enhance the 5G mobile network infrastructure to effectively
support VRCG services as the values are not significantly
better than the 4G networks.

V. RELATED WORKS

A QoE metric objectively captures users’ overall quality
perception affected by various context factors [3]; this is
supported by studies examining differences in QoE scores
due to device types and input [25] (e.g., VR vs. AR and
tablet), screen sizes [26], video codecs and resolution [27],
and network QoS [9], [11], [12]. Likewise, our novel models
presented in this paper measure users’ QoE for VRCG services
affected by the VR device (MetaQuest Pro 2), the underlying
network QoS, cloud-based game streaming, and the content
(interactive shooter game).

To the best of our knowledge, only three studies investigated
VRCG services affected by QoS factors (see Table V for
a detailed comparison). They have considered either small
ranges for RTT (10-90) ms and PL (0-4) % [6] or large one-
way dalay (OWD) (100-500)ms. In contrast, based on the

(a) (b)

(c)

Fig. 4: Poly.Reg. MOSQoE prediction (c), of real network
traffic measurement, (a) RTT and (b) Jitter, to/from 5 different
locations.

opinion of 30 users (the largest set), we have so far the most
comprehensive QoS factors dataset (N = 28), including not
only previous ranges for RTT, PL and, also, combinations of
(RTT, PL) and (RTT,RJ). We cover degradations pertaining
to broadband mobile networks, which occurs in both links
and is very often affected by the combined effect of RTT
and PL (see [7], [15]) and Jitter [7], [8] in 4G, 5G networks
for stationary and mobile cases. We assess them in the most
network demanding gaming content (shooter) that depends on
fast and precise responses from users (similar to BeatSaber).

Foremost, no previous studies have introduced concrete and
accurate VRCG QoE models. Although in [4], the authors
apply models for VRCG, the models were not made available.
This research thus represents the first effort to propose and
validate QoE models based on QoS factors specifically for
VRCG. QoE models for VR technologies and games are in
high demand [28]. From the perspective of network operators
and cloud providers, these models are required since QoS
features are easily accessible and can be optimized regardless
of the content [17]. From the research side, our proposed
models can be used as a robust quality measurement guideline
to further enhance studies in network traffic [29], video codecs
[30], and mobile networks [31] for VRCG.

VI. CONCLUSION AND FUTURE WORK

In this paper, from user tests (N=30) dataset, three novel
VRCG regression models were proposed to predict QoE for
(N=28) networks conditions RTT, PL, (RTT,RJ) and (RTT,PL)
for the first time. The study reveals that simple linear re-
gression can effectively predict VRCG QoE. Through F-tests,
it has been determined that Poly.Reg has the best fit. Our
model’s most important features to predict VRCG QoE are
RTT, and (RTT,RJ). Further, an assessment of real network
traffic reveals MOS between (”Good - 4” and ”Very Good -
5”) and (”Average - 3 and ”Poor - 2”) for VRCG service in



TABLE V: Comparision of the state-of-the-art with our work

Paper VR Assessment Users Games Network
Context

Network
Direction

N. Network
Conditions Network Metrics Model

[6] VRCG (ALVR) 10 Together VR; Beat Saber;
HalfLife-Alyx; – Up/Down Links 8 RTT: 0,10,30,50,70,90 in ms

PL: 0,2,4 in % No

[5] VRCG (Daydream) 10 In-house (Sword Swing) – – 4 OWD:120,150,200 300 in ms No

[4] VRCG (ALVR) 12 AngryBird; BeatSaber;
ArtPuzzle Wired – 4 OWD: 0,100,300,500 in ms No

This Paper VRCG
(Nvidia CloudXR) 30 Serious Sam VR 4G, 5G,

Wired
Up/Down

Links 28

RTT: 4, 27, 52, 77, 177, 277, 352, 402 in ms
PL: 6,12,24 in %

RTT and PL: (27,52,77)ms; (2,4,6) %
RTT and Jitter: (27,52,77)ms; (1,3,6)std

Linear, Polynomial and
Non-Linear Regression.

wired and mobile networks (4G,5G), respectively. We aim to
present our models in the ITU-T SG12 meetings in the future.

Acknowledgment: We thank David Lindero for his feed-
back on the models’ performance analyses.
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