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Abstract—The development of accurate energy prediction
models plays a significant role in achieving sustainability in
smart cities. However, stakeholders such as municipalities face
the problem of creating individual energy forecasting models
for multiple building fleets which leads to an increased amount
of computational resources and time spent to prepare each
model. This research proposes a method using Hierarchical
clustering with dynamic time warping to group similar buildings
according to their consumption values and the integration of
transfer Learning (TL) to share the model weights from a source
building to other target buildings. Different TL models using
only 20%, 40%, and 60% of the target data were tested against
a standard workflow without TL for predicting electricity and
district heating for several school buildings using a Multivariate
LSTM model. The results show a small variation between the
TL and the standard models; when trained on only 40% of
the data, the models achieved an average of 0.24% RMSE
improvement for district heating and a 1.23% for electricity,
indicating a potential for reduced data requirements without
sacrificing predictive accuracy and demonstrating TL’s efficiency
to streamline the energy forecasting process for building fleets.

Keywords— Building fleet, Energy consumption, Transfer
learning, LSTM, DTW, Hierarchical clustering, Time series
forecasting

I. INTRODUCTION

Municipalities own, maintain, and manage extensive
building fleets and given the current energy crisis, there
is a demand for environmentally friendly ICT solutions
that contribute to the enhancement and reduction of energy
consumption in buildings. Accurate predictions of energy
consumption for future periods aid significantly in cost-
cutting and energy savings [1]. However, this involves the
creation of individual models for each building resource, and,
in the long term, this represents a significant challenge to
scale to a larger set of buildings as each model is trained
independently without leveraging any past knowledge. It is
also computationally expensive and requires a large amount
of data to achieve high performance [2]. In the context
of building fleets, optimizing energy usage and refining
operations in existing and future buildings is necessary. A
solution to this problem involves using Transfer Learning
(TL) by leveraging knowledge from one domain to improve
performance in another similar domain. The integration of
TL is a promising technique that has already demonstrated its
potential to enhance data efficiency, accelerate training speed,
and increase model accuracy [3].

The applications of TL have been widely studied in the
fields of computer vision and natural language processing
[4]. Nevertheless, applications within the research area of
time series analysis are still rare; for instance, one common
problem is finding a domain with a high degree of similarity
with the target domain, as the similarity between domains is a
crucial factor influencing the effectiveness of TL in time series
analysis. Different approaches to selecting the right source
domain have been studied. Among them, source selection
is an interesting procedure in reusing knowledge for energy
consumption models in buildings, as the main idea is to only
reuse knowledge from domains with reasonable similarity to
the target. This degree of similarity between the time series
has been studied using different techniques, such as selecting
source domains based on performance testing in the target
domain using labeled data and combining top-performing
models into an ensemble. Common similarity measures
include Dynamic Time Warping (DTW), Euclidean distance,
Jensen–Shannon (JS) divergence, Pearson correlation, and
Maximum Mean Discrepancy (MMD). Additionally, selecting
pre-trained source models based on the similarity of target
encodings using cosine distance can assist in domain selection
[5]. Although the applications of TL in the realm of time
series are not as prevalent as those in computer vision, it has
the potential to speed up the creation and development of new
forecasting models. The integration of TL is advantageous
for time series forecasting in buildings to save time and
computational resources by leveraging pre-trained models like
RNN-LSTM (Recurrent Neural Network - Long Short-Term
Memory). This approach enhances prediction accuracy
efficiently [6].

School buildings constitute Sweden’s largest segment of
public properties, presenting a significant opportunity for
sustainable development. Among these, approximately 11,567
school buildings covering 30 million square meters are heated
through district heating systems, accounting for 28% of all
public properties. Schools surpass all other non-residential
buildings in energy consumption. In 2020, heating demands
reached 4,222 GWh through district heating systems and 573
GWh via electricity, with an additional 2,534 GWh used
for supplementary purposes such as lighting and ventilation.
Within the service sector, school buildings stand out with
energy usage occupying 27% of the total heated area in 2020,
averaging 113 kWh/m2 and 125 kWh/m2 for district heating



and electricity respectively [7]. To address these concerns, the
European Union aims for a 32.5% increase in energy efficiency
by 2030 compared to projected consumption, while Sweden
targets a 50% improvement from 2005 levels. One of the
main current challenges is that school buildings consume more
energy than any other non-residential buildings. In this context,
energy forecasting systems and TL are explored to advance
energy efficiency in school buildings’ infrastructure. Leverag-
ing accurate forecasting of energy usage and integrating the
TL approach for the existing buildings and the buildings at
the initial phase of the planning could allow all stakeholders
to conduct their economic analysis and optimize decision-
making.

This work aims to investigate the integration of TL in
the creation of energy forecasting models for building fleets
located in Skellefteå municipality, in the North of Sweden. By
focusing on this region, the study aims to provide insights into
the applicability and effectiveness of TL within a distinct geo-
graphical and environmental setting. Based on the information
provided, the contributions of this work are the following:

• A proposed method for grouping similar buildings and
selecting the source building by employing a similarity
measurement for time series data and a clustering tech-
nique.

• An experiment that integrates TL with a subset of target
building data and a standard model with no TL to analyze
and compare the performance results. This analysis eval-
uates and contrasts the performance outcomes between
the two methods.

II. RELATED WORK

Several authors have stated the use of TL for energy predic-
tion of buildings; Kim et al. [8] implemented a Long Short-
Term Memory TL (LSTM-TL) model for building energy
demand forecasting. TL is used to enhance the accuracy of the
LSTM prediction model under different weather conditions.
Moreover, Gonzalez-Vidal et al. [9] proposed a TL framework
for smart buildings to address energy-related problems. It
utilizes a clustering algorithm for mixed data and clustering
of the image-based representation of time series to create
a network that groups buildings sharing characteristics. The
framework was tested with several rooms/buildings and two
energy efficiency domains. It reduces the coefficient of vari-
ation of the root mean squared error (CVRMSE) in energy
consumption prediction by 21.6% and in air conditioning
usage prediction by a significant margin. Furthermore, Genkin
et al. [10] proposed a TL approach to reduce the impact
of the reinforcement learning agent’s warm-up period on the
building’s energy efficiency by transferring knowledge from an
existing, optimized smart building to a newly commissioned
building, the warm-up period efficiency is enhanced by up to
6.2 times, and the prediction variance is reduced by 132 times.

On the other hand, Zhou et al. [11] presented a use case for
TL to predict the electric power of a primary school building
in China and leveraged the use of data from different similar
buildings located in the same area to improve the model due

to the school’s insufficient historical data to create a robust
prediction model, the results are considered satisfactory as the
error rate is relatively low by using this new approach. In
addition, different authors have developed similar approaches
when dealing with data scarcity [12] [13] [14] [15] where
a TL model is used to approach different problems such as
load forecasting, occupancy prediction, energy consumption
and predictive control of HVAC.

The different works show that TL has been widely imple-
mented to approach different problems related to buildings,
mainly focused on developing models with limited data to
leverage the knowledge from rich pre-trained source models.
However, existing literature has not thoroughly addressed
the application of TL models across multiple building fleets.
Therefore, this work seeks to introduce a methodology tailored
to bridge this gap.

Fig. 1. Proposed Transfer Learning method Flow chart

III. METHODOLOGY

Pan et al. [16] defined TL as the process of enhancing
the predictive model of a target domain DT leveraging the
patterns and knowledge from a source domain DS , even
when the source and target domains DS ̸= DT or tasks
TS ̸= TT are not the same. For this scenario, TL allows a
predictive energy consumption model for a target building to
be improved by using data from a source building with similar
energy consumption patterns. This similarity is calculated
using the DTW distance between their energy usage time
series. Essentially, a model developed for one source building
is adapted by a target building, accelerating model training and



potentially reducing the need for extensive data from target
buildings.

A high-level overview of the proposed method is illustrated
in Figure 1 with a flowchart. A more detailed explanation of
the different processes of this method is presented below:

A. Data Pre-processing:

This step involves the pre-processing and the cleaning of
the data with different techniques for the datasets used in this
work (electricity and district heating data). The data cleaning
process included removing outliers using a Z-Score threshold
of 2.0 to 2.5 and eliminating zero values. Missing values were
addressed through linear interpolation, and data normalization
was achieved using the Z-score method. Additionally, data
exploration techniques such as stationarity analysis, descriptive
statistics, and visualization were implemented to examine the
data. The different methods for data cleaning used for this
part were obtained from the previous work which focused on
developing forecasting models for the same datasets [17].

B. DTW Distance Matrix:

Since we are dealing with time series datasets that don’t
share the same length, DTW is an ideal distance metric to
calculate the similarity between time series, unlike Euclidean
distance that forces both time series to be the same length. The
basic idea is that given two sequences, the objective of DTW
is to temporally align these sequences in some optimal sense
under certain constraints [18]. For this step, DTW between
multiple time series is calculated using the distance matrix
method from the DTAI Distance library [19]. To compute the
DTW distance matrix for multiple time series (on this case, the
different datasets for each building) {T1, T2, . . . , Tk}, all pairs
are iterated (i, j), and then the DTW distance is calculated
DTW (Ti, Tj). The distance matrix D can be represented as
Dij = DTW (Ti, Tj) for all i, j, where D is a symmetric
matrix with zeros on the diagonal.

C. Hierarchical clustering:

Agglomerative Hierarchical Clustering (AHC) is a method
for grouping similar objects based on a measure of distance or
similarity and the clusters can be visualized in a hierarchical
tree called a dendrogram which also offers the advantage
of not having to specify a pre-defined number of clusters,
instead, the number of clusters can be decided by analyzing
the dendrogram [20]. Using DTW as a similarity distance
with AHC has already improved clustering results compared
to other distance measures such as Euclidean, Manhattan, and
Cosine [21]. Based on the aforementioned, this step groups
similar buildings in terms of energy consumption values. This
is achieved by using AHC, and the linkage criterion uses the
DTW distance matrix generated in the previous step with a
ward method to produce clusters with small variances and
similar sizes.

D. Source Building selection:

For each cluster, the building with the smallest average
DTW distance to all other buildings in the cluster is selected as
the source building where the knowledge sharing will come
from. Furthermore, the length of the time series is also an
important point for selecting the right source dataset since an
abundance of data will have better and more generalizable
feature representation that will contribute to better knowledge
sharing [22]. Thus, the average DTW distances between build-
ings within each cluster are calculated and normalized by the
length of each series. Afterward, the building with the smallest
value is considered the source building, and the other buildings
in the cluster will be considered targets where the knowledge
will be shared.

E. Source Building model training:

The source building model is trained with the preferred
time series model architecture (Multivariate LSTM for this
case), and the entire model is saved (containing weights and
training configuration) in h5 format. After this, the forecasting
is performed.

F. Transfer Learning

1) Feature extraction and Fine tuning: The TL approach
usually involves using 2 common techniques; Feature
extraction and Fine-tuning. Feature extraction basically
comprises the removal of the layers responsible for
classification in the source model and the incorporation
of new layers specific to the target task. The weights of
the source model are frozen, meaning they are not updated
during training, and only the weights of the newly added
layers are trained using the target dataset. On the other hand,
Fine-tuning involves unfreezing some or all of the layers from
the source model with a low learning rate. This allows these
layers to be updated with the new dataset, enabling the model
to adapt and learn more specific features relevant to the new
task or domain. Fine-tuning helps refine the performance of
the target model by adjusting its parameters to better suit the
specific tasks [23].

2) TL workflow: The standard TL workflow described on
the Keras TL & fine-tuning documentation [24] is utilized for
the experiments on this work. A detailed explanation of this
workflow is given below:

1) The pre-trained weights of the source model are loaded
into the new target model, and the original output layer
of the pre-trained model is replaced by adding a new
output layer specific to the target on top of the pre-
trained model [25].

2) The other layers of the source model are frozen by
deactivating the trainable setting of this model.

3) A small portion of the target dataset is taken for the
TL models (for this case, 20%, 40%, and 60% of the
data). This data portion is then divided into training and
testing sets (last 16 months and last 6 months for large
and small datasets, respectively).



4) The target model is trained on the data. The new output
layer is initialized with random weights and optimized
with the selected hyperparameters (after a random search
algorithm). This is the feature extraction process de-
scribed before.

5) After feature extraction where the training starts with
a high learning rate (0.01) and 20 epochs, and once
the model has converged on the new data, a fine-
tuning process is then performed where the layers of
the base model can be unfrozen and retrained with a
lower learning rate (0.0001) and a higher number of
epochs. This step can lead to overfitting, thus a small
value for the patience parameter is assigned to mitigate
this potential issue.

G. Target Building model training:

The target buildings from the same cluster get initialized
with the source building weights and training configuration,
i.e., the h5 file is loaded into the target models. Subsequently,
a specified segment of the target data is utilized and the model
is trained using a TL workflow (described above), leading to
the execution of the forecasting process.

IV. EXPERIMENTS

To evaluate the functionality of the proposed method, we
utilized several datasets for electricity and district heating,
covering 6 and 9 school buildings, respectively. Additional
details on the experiments are provided in the following
subsections.

A. Datasets and selected model architecture

The school buildings are located in Skellefteå municipality,
in Sweden. The electricity and district heating datasets are
daily consumption data, and both types of energy are repre-
sented by kWh/m2. The dataset information is described in
Table I. Furthermore, Shahid et al. [17] developed several
forecasting models for these two types of energy using the
same datasets provided for this work. The study involved
the development of short-term forecasting of electricity and
district heating using Multivariate RNNs, LSTM, CNNs, and
autoencoders. The hybrid CNN-LSTM and Multivariate LSTM
achieved the best accuracy compared to other models. For
simplicity, the selected model architecture for this work is
the Multivariate LSTM model with 7-time steps and 3-day
forecasting. In addition, the study identified features that
improve predictions for both types of energy using Pearson
correlation and these are also used for this work. For district
heating; the cyclic features for month day, and day of the year,
as well as the actual degree day. For electricity; cyclic features
for weekday.

B. Clustering

The datasets for each type of energy are pre-processed
and cleaned using the methods mentioned in the previous
section. Subsequently, the DTW distance matrix is calculated
for electricity and district heating using all datasets available.

TABLE I
DATASETS INFORMATION

Energy type Name Building Type Years
Bureskolan Primary school 2012-2022

Björnåkersskolan Primary school 2012-2022
Byskeskolan Primary school 2012-2022

Bureskolan bath Bathhouse 2012-2022
Byskeskolan bath Bathhouse 2012-2022

Byskeskolan Förskola Pre-school 2014-2022
Tallbacka Pre-school 2017-2022

Morohojdens Pre-school 2017-2022

District
Heating

Norrbacka Pre-school 2015-2022
Bureskolan Primary school 2011-2023

Björnåkersskolan PrImary school 2011-2023
Byskeskolan PrImary school 2011-2023

Tallbacka Pre-school 2017-2023
Morohojdens Pre-school 2017-2023

Electricity

Norrbacka Pre-school 2015-2023

Figure 2 represents a heatmap of the raw DTW values
for each type of energy. The lower the values, the higher
the similarity between time series. As observed, the DTW
distances are highly influenced by the type of building in
both cases.

The dendrogram generated with AHC and the DTW dis-
tance matrix created in the previous step are used to group
similar buildings into clusters for each type of energy. This
clustering is then validated using a Silhouette Score, which is
a value between -1 and 1, where higher values indicate a better
clustering [26]. Figure 3 depicts the dendrogram generated for
electricity and district heating. In the case of electricity, there
is a clear grouping with a total of 2 clusters, and the Silhouette
coefficient shows the highest value for this number, whereas,
for district heating, the optimal value is around 3 clusters with
a Silhouette coefficient higher than 0.6.

After clustering, the normalized average distances for each
building to all other buildings in the cluster are calculated
to select the source building. The buildings with the smallest
values are categorized as the source buildings, and the others
are labeled as target buildings. Table II presents the generated
clusters and the selected source building.

C. Source Models

Once the source buildings are located on each cluster, the
Multivariate Multistep LSTM model [17] is used to train and
forecast electricity and district heating consumption values
using the data from these source buildings. To find the right
hyperparameters (such as learning rate, batch size, and the
number of layers and epochs), a random search algorithm
is implemented with a total of 10 combinations where the
combination with the highest accuracy is selected, and those
hyperparameters are then used to train the final model. For this
source model, the data split is 80/20 for training and testing.
Finally, the save model option supported by Keras is utilized
to store the weights, biases, model architecture, and training
configuration in an h5 file.



(a) Electricity

(b) District Heating

Fig. 2. DTW Distance Matrix values for each building pairwise (kWh)

TABLE II
CLUSTERING FOR ELECTRICITY AND DISTRICT HEATING WITH SOURCE

BUILDINGS

Energy
Type Cluster Buildings

Scaled
Avg.

Distance
Source

Bureskolan 18.887
Björnåkersskolan 21.987Cluster

1 Byskeskolan 20.023
Bureskolan

Bureskolan bath 6.106Cluster
2 Byskeskolan bath 6.240

Bureskolan
bath

Byskeskolan
Förskola 7.530

Tallbacka 13.474
Morohojdens 14.218

District
Heating

Cluster
3

Norrbacka 10.281

Byskeskolan
Förskola

Bureskolan 11.060
Björnåkersskolan 13.069Cluster

1 Byskeskolan 15.936
Bureskolan

Tallbacka 11.046
Morohojdens 12.910

Electricity
Cluster

2 Norrbacka 7.020
Norrbacka

(a) Electricity

(b) District Heating

Fig. 3. Agglomerative Hierarchical Clustering dendrograms

D. Target Models

To test the efficiency of the proposed TL method, the target
models are created as follows:

• A standard model without TL (for comparison purposes)
and using 100% of the data.

• A model using a small portion of the data (the last 20%,
40%, and 60%) and the TL workflow described in the
previous section involving feature extraction and fine-
tuning.

To ensure a fair comparison, all models (TL and Non-TL)
use the same testing set consisting of the last 16 months
for larger datasets (Primary schools and Bathhouses) and the
last 6 months for smaller datasets (kindergarten). Afterwards,
forecasting is performed, and common metrics such as RMSE,
MAE, and R-squared are calculated for each model.

V. RESULTS AND DISCUSSION

The performance metrics for the target models for both
district heating and electricity are presented in Table III. The
last column of the tables also presents the percentage of RMSE
improvement between the standard Non-TL model (NO TL)



and the models using TL (TL 20, TL 40, TL 60). In general,
the results for all models using TL generate similar results to
those when creating individual models without TL. Figure 4
shows the electricity consumption real values and the Non-TL
and TL predictions for Byskeskolan in the month of September
2023. The prediction results exhibit high similarity across both
the standard model and the TL model.

Fig. 4. Electricity consumption for Byskeskolan Actual values vs. Predicted
values with the standard model and TL models for September 2023.

For district heating, the TL models do not consistently
match the performance of the NO TL models across all
clusters. Nevertheless, the models using 40% and 60% of
the data show an average RMSE improvement of 1.50%
and 0.23%, respectively; the models using 20% of the data
generally show negative improvement, indicating they do not
achieve similar accuracy with less data, with the exception of
Björnåkersskolan, where a lower amount of the data generated
better results. For electricity, the results show a better RMSE
improvement when using 40% of the data. On average, there is
a 1.23% improvement, whereas there is a 0.68% improvement
for 60% of the data. For this type of energy, the performance
results are significantly affected when using a small portion
of the data. On average, for both types of energy, the TL
models using 40% of the data tend to come closer to the Non-
TL models using the whole dataset, and it also comes with
a small improvement on the RMSE. This suggests that, by
using TL and only using 40% of the target data, we can reach
similar results compared to utilizing the whole dataset and
not leveraging learning from a source model. These results
emphasize how TL can improve the resilience and predictive
precision of models, even when faced with limited data in the
target building.

VI. CONCLUSION AND FUTURE WORK

In conclusion, this research proposes a method for creating
multiple energy forecasting models for building fleets using
common clustering methods and TL. Different TL models
were tested against standard models without TL, and the
results indicate similar accuracy. This suggests that equivalent
performance can be achieved by reusing the knowledge from
a pre-trained model that has been trained on a similar dataset.
The integration of TL techniques in the development of fore-
casting models can significantly save time and computational

resources. Municipalities can benefit from this approach by
training a few models for representative buildings and then
using the trained weights for other target buildings. This
avoids the need to develop individual models for each building,
which involves several tasks such as finding the right model
architecture, training all layers, and fine-tuning. Furthermore,
TL can also be beneficial in cases where data scarcity is
present. Pre-trained models can be used to capture general
patterns and representations from a rich source domain and
then share this knowledge with the target with limited data,
leading to a more robust and accurate model. For future work,
exploring this method with other types of public buildings
could be valuable as the experiments presented are only
focused on different types of school buildings. Additionally,
this method can be tested on other model architectures, such
as Multilayer Perceptron (MLP) and CNN-LSTM.
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